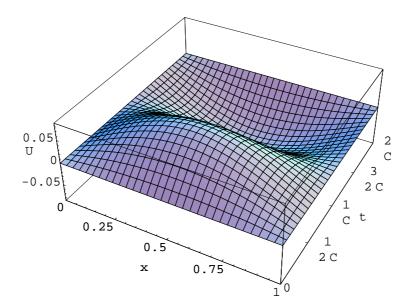
KMA354 Partial Differential Equations

Assignment 2. Due Thursday August 30, 2012

1. Using an xt diagram, solve the following problem.

[DE:]	$U_{tt} - c^2 U_{xx}$	=	0	$\begin{array}{l} 0 < x < \infty \\ 0 < t < \infty \end{array}$
	U(x,0)	=	0	$0 < x < a$ $a + 2l < x < \infty$
[IC:]	$U_{t}(r,0)$	_		$a \le x \le a + 2l$ $0 < x < \infty$
[BC:]				$\frac{0 < x < \infty}{0 < t < \infty}$

2. For the solution domain $D(0 \le x \le 1, t \le \frac{2}{c})$, the vertical displacement U(x, t) of a finite string is shown in the figure below. The governing equation and constraints on the string's motion are given in the following table.



[DE:]	$U_{tt} - c^2 U_{xx}$		0	0 < x < 1
	$O_{tt} - C O_{xx}$	_	0	$0 < t < \infty$
	U(x,0)	=	0	0 < x < 1
[IC:]				
	$U_t(x,0)$	=	x(1-x)	0 < x < 1
[BC:]	U(0,t)	=	0	$0 < t < \infty$
	U(1,t)	=	0	$0 < t < \infty$

Use an xt diagram and the method of images to find the solution U(x,t) in D. Show that there are seven distinct regions within D and that the solution within each of these regions is obtained from the following left and right travelling waves defined at t = 0. [Note that the magnitude of each travelling wave must be divided by 12c.]

Region	$\phi(x+c0)$	$\psi(x-c0)$
$-2 \le x \le -1$		$(2+x)^2(1+2x)$
$-1 \le x \le 0$		$-x^2(3+2x)$
$0 \le x \le 1$	$x^2(3-2x)$	$-x^2(3-2x)$
$1 \le x \le 2$	$(2-x)^2(2x-1)$	
$2 \le x \le 3$	$(2-x)^2(7-2x)$	

3. Solve the nonhomogeneous wave equation

$$\frac{\partial^2 U}{\partial t^2} = 9 \frac{\partial^2 U}{\partial x^2} - e^{-x}, \qquad 0 < x < 4, \ t > 0;$$

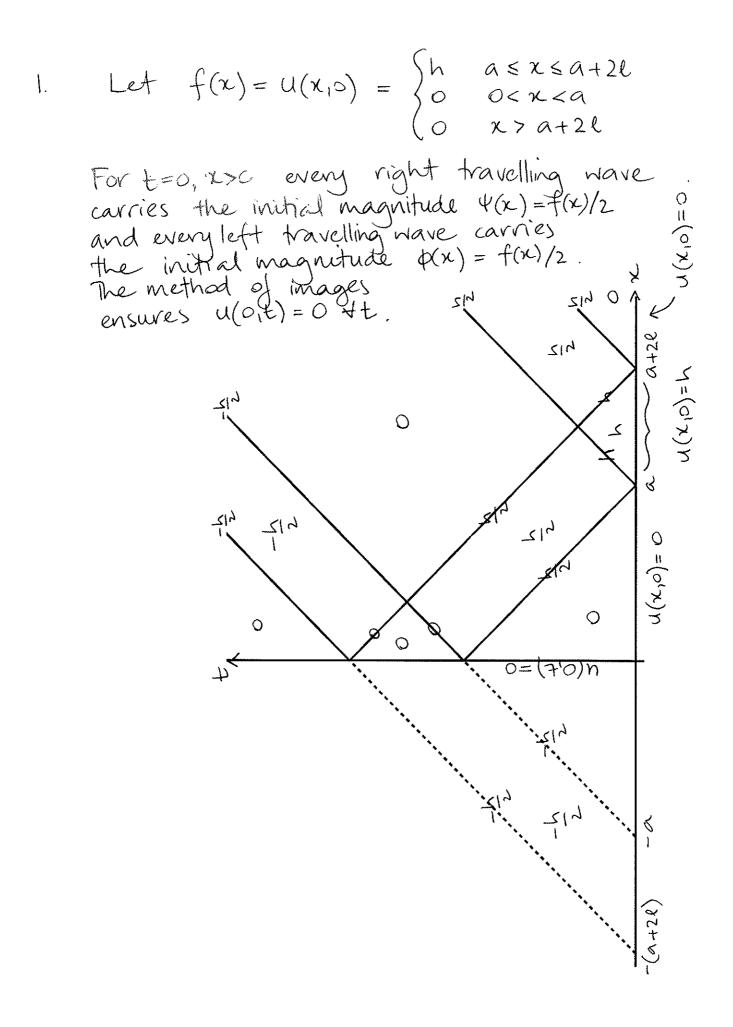
with boundary conditions

$$U(0,t) = U(4,t) = 0, \quad t > 0;$$

and initial conditions

$$U(x,0) = \sin(\pi x)$$
 and $U_t(x,0) = 0$, $0 \le x \le 4$.

School of Mathematics & Physics Assignment Cover Sheet				
Student ID:	PATVIT			
Name:	UNIVERSITY of TASMANIA			
I declare that all material in this assignment is my own work except where there is clear acknowledgment				
or reference to the work of others and I have read the University statement on Academic Misconduct				
(Plagiarism) on the University website at <u>www.utas.edu.au/plagiarism</u> or in the Student Information				
Handbook.				
Signed Date	9			



2. PDE : $U_{EE} - c^2 U_{XX} = 0$ $X \in (0,1), t > 0$ IC2: $U_{t}(x_{10}) = 0$ } $\chi_{t}(0,1)$ BC1: $u(o_1t) = 0$ } t > 0. BC2: u(1,t) = 0 } Since the PDE is the wave equation, the left travelling waves have speed - c and the right travelling waves have speed c. $\therefore t_1 = \frac{1}{c}$ and $t_2 = \frac{2}{c}$. Using the method of images to enforce the boundary conditions, the reft and right characteristics form regions in which the solution combines in a piecewise manner. Tracing an initial disturbance through multiple reflections at the boundaries left travelling waves: p(xt) 7 right travelling waves: 4(x-it) (5) 6) (4) 3 <u>ν γ</u> $\frac{\langle}{\phi_o}$ $\frac{\dot{\varphi}_1}{\dot{\varphi}_1}$ $\overline{\phi_2}$ 2 shows that the initial solution recurs at $t = nt_2$ $n \in \mathbb{Z}$.

211

D'Alamberts solution, + $\frac{1}{2c}\int_{x-c+}^{x+c+}g(s)ds$ $u(x_{t}) = \frac{f(x_{t}+ct) + f(x_{t}-ct)}{2}$ where u(x,o) = f(x)and $U_t(x,o) = g(x)$, applies everywhere in the solution domain for an infinite string. For the finite string, this solution can only be used in a region unaffected by the boundaries; i.e. region (1) for ! this problem. Here, f(x) = 0 and g(x) = x(1-x). Hence $= \int (x+ct s(1-s) ds$ $U_0(x,t)$ 2C Ja-ct $\frac{1}{2c} \left[\frac{s^2}{2} - \frac{s^3}{3} \right]_{x-ct}^{x+ct}$ $= \frac{1}{12c} \left[s^{2} (3-2s) \right]^{\chi+c}$ $= \frac{1}{12c} \left[(x+ct)^2 (3-2(x+ct)) - (x-ct)^2 (3-2(x-ct)) \right]$ This solution can be decomposed into respective left and right travelling $\phi_0(x+ct) = (x+ct)^2 (3-2(x+ct))$ Naves $\Psi_{o}(x-ct) = -(x-ct)^{2}(3-2(x-ct))$ which have initial definitions (t=0) $\phi_0(x) = \frac{\chi^2}{12c} (3-2x)$ $\chi \in [$ xeloij $\psi_{o}(x) = -\frac{x^{2}}{3}(3-2x)$ Note that $U(x,o) = \phi_0(x) + \psi_0(x)$ = $\frac{x^2}{12c}(3-2x) - \frac{x^2}{12c}(3-2x)$ = 0, as expected.

2/2

213 Region (2) The solution is the superposition of ϕ_0 and Ψ_1 (which is yet to be defined). That is, $\Psi_{\Theta}(x,t) = \phi_0(x+ct) + \Psi_1(x-ct)$ Using the boundary condition bordering region u(0,t) = $\Rightarrow 4_1(-ct) = -\phi_0(ct) + 4_1(-ct)$ In general, $\Psi_1(x) = -\phi_0(-(x))$. -][] $\Rightarrow \Psi_1(x) = -\left(\frac{(-x)^2}{12}(3-2(-x))\right)$ $= -\frac{\chi^2}{12c}(3+2\chi)$ $x \in [-1,0]$ Similarly, $\Psi_1(x-ct)' = -\left(\frac{(-(x-ct))^2}{12c}\left(3-2(-(x-ct))\right)\right)$ $\frac{(x-ct)^2}{12c}$ (3+2(x-ct)) :. $U_{2}(x,t) = \frac{1}{12c} \left[(x+ct)^{2} (3-2(x+ct)) + (x-ct)^{2} (3+2(x-ct)) \right]$ Region (3) The solution is the superposition of to and ϕ_i (which is yet to be defined). That is, $y_3(x,t) = \phi_i(x+ct) + \psi_o(x-ct)$. Using the boundary condition bordering region (3), U(1,t) $\phi_1(1+ct) + \psi_0(1-ct)$ $\Rightarrow \phi_1(1+ct) = -\psi_0(1-ct)$ = -\u03c4_0(2-(1+ct)) : In general, $\phi_1(x) = -\psi_0(2-x)$ 2

$$\Rightarrow \phi_{1}(x) = -\left(-\frac{(2-x)^{2}}{12c}(3-2(2-x))\right) \\ = \frac{(2-x)^{2}}{12c}(-1+2x) \qquad x \in [1,2] \\ \therefore \phi_{1}(x+ct) = \frac{(2-(x+ct))^{2}}{12c}(2(x+ct)-1) \\ \text{ind} \quad u_{Q}(x,t) = \frac{1}{12c}\left[(2-(x+ct))^{2}(2(x+ct)-1) - (x-ct)^{k}(3-2(x-ct))\right] \\ equive (4)$$

$$u_{Q}(x,t) = \psi_{1}(x-ct) + \phi_{1}(x+ct) \\ = \frac{1}{12c}\left[(x-ct)^{2}(3+2(x-ct)) + (2-(x+ct))^{2}(2(x+ct)-1)\right] \\ \frac{Region(5)}{12c} \\ u_{Q}(x,t) = \psi_{2}(x-ct) + \phi_{1}(x+ct) \\ u_{Sing} \text{ the boundary condition bordering veglow (5), \\ u_{Q}(-t) = -\phi_{1}(ct) \\ = -\phi_{1}(-ct)^{k}(-1+2(x-t)) \\ \therefore \text{ Th general, } \psi_{2}(x) = -\phi_{1}(-x) \\ \Rightarrow \psi_{2}(x) = -\left(\frac{(2-(x))^{2}}{12c}(-1+2(-x))\right) \\ = \frac{(2+x)^{2}}{12c}(1+2x) \qquad x \in [-2, -1] \\ \therefore \psi_{2}(x-ct) = \frac{(2+(x-ct))^{2}}{12c}(1+2(x-ct)) \end{cases}$$

12c

24

$$2^{1/5}$$
and $U_{0}(x,t) = \frac{1}{12c} \left[(2+(x-ct))^{2} (1+2(x-ct)) + (2-(x+ct))^{2} (2(x+ct)-1) \right]$

$$\frac{\text{Region (6)}}{(2(x+ct))^{2} (2(x+ct)-1)^{2}} \left[(2(x+ct))^{2} (2(x+ct)-1) \right]$$

$$U_{0}(x_{1}t) = \Psi_{1}(x-ct) + \Phi_{2}(x+ct)$$

$$U_{0}(x_{1}t) = 0$$

$$= \Psi_{1}(1-ct) + \Phi_{2}(1+ct)$$

$$\Rightarrow \Phi_{2}(1+ct) = -\Psi_{1}(1-ct)$$

$$\Rightarrow \Phi_{2}(1+ct) = -\Psi_{1}(1-ct)$$

$$\Rightarrow \Phi_{2}(x) = -\left(-\frac{(2-x)^{2}}{(2-(1+ct))} (3+2(2-x)) \right)$$

$$= \frac{(2-x)^{2}}{(2-2x)} (7-2x) \quad x \in [2,3]$$

$$\therefore \Phi_{2}(x+ct) = \frac{(2-(x+ct))^{2}}{(2-2x-ct)} (1-2(x+ct))$$

$$= \frac{1}{2c} \left[(x-ct)^{2} (3+2(x-ct)) + (2-(x+ct)) \right]$$

$$\frac{(2-x)^{2}}{(2-2x)} (1-2(x+ct)) = \frac{(2-(x+ct))^{2}}{(2-2(x+ct))} \left[(1-2(x+ct)) + (2-(x+ct)) \right]$$

$$\frac{(2-x)^{2}}{(2-x+ct)} (1+2(x-ct)) + (2-(x+ct))^{2} (1-2(x+ct)) = \frac{1}{12c} \left[(2+(x-ct))^{2} (1+2(x-ct)) + (2-(x+ct))^{2} (1-2(x+ct)) \right]$$

2/6 An alternative technique for determining $f_1(x)$, $f_2(x)$, $\phi_1(x)$, and $\phi_2(x)$ at t=0 can be seen in equations $\Pi - H$. which permit all definitions to trace back to $Y_0(x)$ and $\varphi_0(x)$. $x \in [-1, 0]$ $\Psi_1(\mathbf{x}) = -\phi_0(-\mathbf{x})$ 11 : $\chi \in [1, 2]$ $2: \phi_1(\chi) = -\psi_0(2-\chi)$ 3: $\Psi_2(\chi) = -\phi_1(-\chi)$ = $\Psi_0(2+\chi)$ $\chi \in [-2,-1]$ $\begin{array}{rcl} [4]: & \phi_{2}(\chi) = -\psi_{1}(2-\chi) \\ & = & \phi_{0}(\chi-2) \end{array}$ $x \in [2,3].$ In this technique we recognise that the solution is constant along a characteristic, with magnitude defined at t=0. When a characteristic meets a boundary it interacts with a characteristic moving in the opposite direction, with the same speed, and having travelled the same distance. POR 741 Since the boundary condition is $u(o_1t)=0$ for the case above, $\psi_1(x) + \phi_0(-x) = 0$ $\Rightarrow \Psi_{1}(\chi) = -\phi_{0}(-\chi) \qquad \chi \in [-1,0]$ For the interaction of 40 and ϕ_1 at x=1 we must satisfy u(1,t)=0.

PIN 740 $\phi_{1}(x) = -\psi_{0}(2-x)$ $x \in [1,2]$ 0 2-2 × 2 >12-xK lt. For the intersection of 4_2 and ϕ_1 at x=0 we again have $u(o_1t)=0$. $\Psi_{2}(\chi) = -\phi_{1}(-\chi)$ $= \Psi_{0}(\chi+2)$ *π*Ψ₀ xe[-2,-1] -1 x+2 Finally, for the intersection of 4, and ϕ_2 at x = 1 we have U(1,t) = 0. $\begin{aligned} \phi_2(\chi) &= -\psi_1(2-\chi) \\ &= \phi_0(\chi-2). \end{aligned}$ \$0 . $\chi \in [2,3]$ 2 -1 2-2 x-2 0 Definitions in further regions can be obtained similarly. For $k \ge 1$, $k \in \mathbb{Z}$ $\varphi_{2k-i}(x) = -\varphi_0(-(x-2k)) \quad x \in [2k-1, 2k]$ $\phi_{2k}(x) = \phi_0(x-2k) \quad x \in [2k, 2k+1]$ $\psi_{2k-1}(x) = -\phi_0(-(x+2k)) \quad x \in [-2k-1, -2k]$ $\Psi_{2k}(x) = \Psi_{0}(x+2k) \quad x \in [-2k, -2k+1].$

3/1 $U_{tt} = 9U_{xx} - e^{-x}$ $x \in (0,4), t > 0.$ 3. PDE: u(0,t) = 0 } t > 0. u(4,t) = 0 } BC1: BC2: $U(x, 0) = \sin(\pi x)$ $U_{t}(x, 0) = 0$ $\chi \in [0, 4]$ IC1: IC2: The PDE is nonhomogeneous but it is a time independent function. As such, let The u(x,t) = y'(x,t) + y(x)Then $U_{\chi} = Y_{\chi} + \Psi',$ $U_{\chi\chi} = Y_{\chi\chi\chi} + \Psi'',$ $U_{L} = Y_{L},$ $U_{LL} = Y_{L},$ $U_{LL} = Y_{L}.$: PDE: $y_{tt} = 9(y_{xx} + \psi'') - e^{-x}$ $\Rightarrow y_{tt} - 9y_{xx} = 9\psi'' - e^{-x} \cdot x \in (0, 4)$ t>0 $y(0,t) + \psi(0) = 0$ $y(4,t) + \psi(4) = 0$ BC1: { t>0. BC2: $y(x_{10}) + \psi(x) = sin(Tx)$ $x \in [0,4].$ $y_{t}(x_{10}) = 0$ IC1: IC2: To split this into 2 subproblems we let $y_{tt} - 9y_{xx} = 0 = 9\psi'' - e^{-x}$, and $y(0,t) = 0 \Rightarrow \psi(0) = 0$, $y(4,t) = 0 \Rightarrow \psi(4) = 0$. Subproblem 1 $ODE: 94''-e^{-x}=0$ $x \in (0,4)$ BC1: $\Psi(0) = 0$ BC2: $\Psi(4) = 0$ $\Psi(4) = 0$

32 $\therefore \quad \psi'' = \frac{e^{-\chi}}{9}$ $\Rightarrow \quad \psi' = \int \psi'' d\chi$ $=\int \frac{e^{-x}}{a} dx$ $= -\frac{e^{-x}}{a} + c_1$ $\Rightarrow \Psi = \int \Psi' dx$ $= \int \frac{-e^{-x}}{9} + c_1 dx$ $= \frac{e^{-\chi}}{q} + c_1 \chi + c_2$ $C_1, C_2 \in \mathbb{R}$. Bc1: $\Psi(0) = 0$ = $\frac{e^{0}}{9} + c_{1}(0) + c_{2}$ $\Rightarrow c_2 = -\frac{1}{9}$:. $\psi = \frac{1}{q}(e^{-x}-1) + c_1 x$ BC2: $\Psi(4) = 0$ = $\frac{1}{9}(e^{-4}-1) + c_1 4$ $\Rightarrow c_1 = 1 - e^{-4}$ $\Psi(x) = \frac{1}{9} \left(\frac{e^{x} - 1}{4} + \frac{x}{4} \left(1 - e^{-4} \right) \right)$ Subproblem 2 $y_{tt} - 9y_{xx} = 0$ $x \in (0,4), t>0$ $y_{0,t} = 0$ z = 0 $y_{1,t} = 0$ z = 0PDE : BC1: BCZ: $y(x_{10}) = sin(\pi x) - 4(x)$ $y_{t}(x_{10}) = 0$ $y_{t}(x_{10}) = 0$ IC1: IC2: Let y(x,t) = X(x)T(t) $\Rightarrow y_{tt} = XT'' and <math>y_{xx} = X''T$. $\therefore XT'' = X''T$ Using the homogeneous initial condition first:

312. $\Rightarrow \frac{T''}{a+} = \frac{X''}{a+}$ Differentiating both sides with respect to x or t will equal zero so the expression above must equate to a constant. Based on the form of the boundary conditions, let $\frac{T''}{9T} = \frac{X''}{X} = -\lambda^2 < 0$, $\lambda \in \mathbb{R}$. 9T ... $T'' + 9\lambda^2 T = 0$ and $\chi'' + \lambda^2 \chi = 0$. These two forms of Helmholtz's equation have the respective general solution $T(t) = a_1 \cos(3\lambda t) + a_2 \sin(3\lambda t)$ $X(x) = b_1 \cos(\lambda x) + b_2 \sin(\lambda x).$ Bc1: $y(o_1 t) = 0$ = x(o)T(t)=) X(0)=0 since T(t) =0 +t $\therefore X(0) = b_1 \cos(0) + b_2 \sin(0) = 0$ $\Rightarrow b_1 = 0.$ $\therefore X(x) = b_2 \sin(\lambda x).$ BC2: y(4, t) = 0= X(4) T(t) $= X(4) = 0 \quad \text{since } T(t) \neq 0 \quad \forall t$ $X(4) = b_2 \sin(\lambda 4) = 0$ \Rightarrow sin(4 λ)=0 otherwise b₂=0 will produce the trivial solution for y. $\therefore 4\lambda = n\pi$ $n\in\mathbb{Z}^+$ $\Rightarrow \lambda = n\pi + 4$ $\therefore X_n(x) = b_n \sin\left(\frac{n\pi x}{4}\right)$ $T(t) = a_1 \cos(3\lambda t) + a_2 \sin(3\lambda t)$ $\Rightarrow T'(t) = 3\lambda(-a_1 \sin(3\lambda t) + a_2 \cos(3\lambda t)).$

314 $Tc2: \quad y_{t}(x_{1}0) = 0$ = T'(0)x(x) $\Rightarrow T'(0) = 0 \quad \text{since} \quad x(x) \neq 0 \quad \forall x.$ $\therefore T'(0) = 3\lambda(-a_{1}\sin(0) + a_{2}\cos(0)) = 0$ $\Rightarrow a_{2} = 0$ $\therefore T(t) = a_{1}\cos(3\lambda t)$ and $T_{n}(t) = a_{n}\cos(\frac{3n\pi t}{4}).$ Now $y(x_it) = \sum_{n=1}^{\infty} x_n(x) T_n(t)$ $= \sum_{i=1}^{n} a_{n} b_{n} \sin\left(\frac{n \pi \chi}{4}\right) \cos\left(\frac{3n \pi t}{4}\right)$ $= \sum_{n=1}^{\infty} \alpha_n \sin\left(\frac{n\pi x}{4}\right) \cos\left(\frac{3n\pi t}{4}\right)$ with xn = anbn $y(x, o) = sin(\pi x) - \Psi(x)$ IC1: \Rightarrow sin(TTX) - 4(X) = $\sum_{n=0}^{\infty} x_n \sin(nTTX)$ $\therefore x_n = \frac{1}{2} \int_{-\infty}^{+\infty} \left(\sin(\pi x) - 4(x) \right) \sin\left(\frac{n\pi x}{4}\right) dx$ $= \frac{1}{2} \int_{-\infty}^{+\infty} \left(\sin(\pi x) - \frac{e^{-x}}{q} + \frac{1}{q} - \frac{x}{26} \left(1 - e^{-4} \right) \right) \sin(\frac{n\pi x}{4}) dx$ $= I_1 + I_2 + I_3 + I_4$ where $I_1 = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{\sin(\pi x) \sin(n\pi x)}{4} dx$ $I_2 = -\frac{1}{18} \int_{-\infty}^{\infty} e^{-\kappa} \sin\left(\frac{n\pi\kappa}{4}\right) d\kappa$ $T_2 = \frac{1}{18} \begin{pmatrix} 4 & \sin(n\pi x) & dx \\ 4 & \sin(n\pi x) & dx \end{pmatrix}$ $I_{4} = \left(\frac{e^{-4}-1}{7}\right) \int_{0}^{4} x \sin\left(\frac{n\pi x}{4}\right) dx$

3 5 By the orthogonality conditions of sin, $I_1 = \begin{cases} 0 & n \neq 4 \\ 1 & n = 4 \end{cases}$ Using delta function notation we can write this as $I_1 = S_4 = \begin{cases} 0 & n \neq 4 \\ 1 & n = 4 \end{cases}$ $I_{2} = -\frac{1}{18} \int_{1}^{T} e^{-\chi} \sin\left(\frac{n\pi\chi}{4}\right) d\chi$ Using integration by parts and recurrence relationships, $I_2 = \frac{1}{18} \left[4e^{-\kappa} \left(n\pi \cos\left(\frac{n\pi\kappa}{4}\right) + 4\sin\left(\frac{n\pi\kappa}{4}\right) \right]_0^+ \right]$ $= \left[4e^{-4} (n\pi \cos(n\pi) + 4\sin(n\pi)) - 4(n\pi \cos(0) + 4\sin(0)) - 4(n\pi \cos(0) + 4\sin(0)) - 18(16 + n^2\pi^2) \right]$ $\frac{2n\pi}{9(16+n^2\pi^2)}$ $\frac{2n\pi}{9(16+n^2\pi^2)}$ $T_3 = \frac{1}{18} \int_{-\infty}^{\infty} \frac{\sin(n\pi x)}{4} dx$ $\frac{1}{18} \left(\frac{-4}{n\pi} \right) \left[\cos \left(\frac{n\pi k}{4} \right) \right]^{T}$ $\frac{-2}{9n\pi t} \left[\cos(n\pi) - \cos(0) \right]$ $\frac{-2}{9n\pi} \left[-1 \right]^n - 1 \right]$ n even n odd

3/6 $I_{4} = \left(\frac{e^{-4} - 1}{72}\right) \int_{0}^{4} \chi \sin\left(\frac{n\pi\chi}{4}\right) d\chi$ Let u = x and $dv = \sin\left(\frac{n\pi x}{4}\right) dx$ =) du = dx and $v = \frac{-4}{n\pi} \cos\left(\frac{n\pi x}{4}\right)$ $= \frac{e^{-4}-1}{72} \begin{bmatrix} -4x \cos(n\pi x) + 4 \cos(n\pi x) dx \end{bmatrix}^{+}$ $= \left(\frac{e^{-4}-1}{72}\right) \left[\frac{-4\chi}{n\pi} \cos\left(\frac{n\pi\chi}{4}\right) + \left(\frac{4}{n\pi}\right)^{2} \sin\left(\frac{n\pi\chi}{4}\right)\right]^{4}$ $= \left(\frac{e^{4}-1}{72}\right) \left[\left(\frac{-16}{n\pi} \cos(n\pi) + \frac{16}{n^{2}\pi^{2}} \sin(n\pi)\right) - \left(0 + \left(\frac{4}{n\pi}\right)^{2} \sin(3)\right) \right]$ $= \frac{2(1 - e^{-4})}{9} \cos(n\pi)$ $\frac{2(1-e^{-4})}{9n\pi}(-1)^{n}$ Combining $I_1 \rightarrow I_4$ for all n, $x_{n} = S_{+} + \frac{2n\pi (e^{-4}(-1)^{n} - 1)}{9(16 + n^{2}\pi^{2})} - \frac{2}{9n\pi} [E^{-1}]$ $+ 2(1-e^{-4})(-1)^{n}$ $= S_{4} + \frac{2}{9} \left[\frac{n\pi \left(e^{-4}(-1)^{n}-1\right)}{\left(16 + n^{2}\pi^{2}\right)} + \frac{1 - (-1)^{n} + (-1)^{n}(1 - e^{4})}{n\pi} \right]$ $= S_{4} + \frac{2}{9} \left[\frac{n\pi \left(e^{-4} \left(-1 \right)^{n} - 1 \right)}{16 + n^{2}\pi^{2}} + \frac{1 - e^{-4} \left(-1 \right)^{n}}{n\pi} \right]$ $= S_{4} + \frac{2}{9} \left[\frac{n\pi^{2}(e^{-4}(-1)^{n}-1) - (16+n^{2}\pi^{2})(e^{-4}(-1)^{n}-1)}{n\pi(16+n^{2}\pi^{2})} \right]$ $= \delta_{4} + \frac{2}{9} \left(e^{-4} (-1)^{n} - 1 \right) \left(\frac{n^{2} \pi^{2} - (16 + n^{2} \pi^{2})}{n \pi (16 + n^{2} \pi^{2})} \right)$ $= 54 + \frac{32(1-e^{-4}(-1)^{n})}{9n\pi(16+n^{2}\pi^{2})}$

 $\therefore y(x_1t) = \sum_{n=1}^{\infty} \alpha_n \sin\left(\frac{n\pi x}{4}\right) \cos\left(\frac{3n\pi t}{4}\right)$ $= \sum_{n=1}^{\infty} \left(S_{4} + \frac{32(1 - e^{-4}(-1)^{n})}{9n\pi(16 + n^{2}\pi^{2})} \right) Sin\left(\frac{n\pi x}{4}\right) \cos\left(\frac{3n\pi t}{4}\right)$ $= \sin(\pi x)\cos(3\pi t)$ + $\frac{32}{9\pi}\sum_{n=1}^{\infty} \frac{\left(1-e^{-4}\left(-1\right)^{n}\right)}{\left(16+n^{2}\pi^{2}\right)^{n}} \sin\left(\frac{n\pi x}{4}\right)\cos\left(\frac{3n\pi t}{4}\right)$ Finally, $u(x,t) = y(x,t) + \Psi(x)$ $= \frac{1}{9} \left(e^{-\chi} - 1 + \frac{\chi}{4} \left(1 - e^{-4} \right) \right) + \sin(\pi \chi) \cos(3\pi t)$ $+ \frac{32}{9\pi} \sum_{n=1}^{\infty} \left(\frac{1 - e^{-4} (-1)^n}{(16 + n^2 \pi^2)n} \right) \sin \left(\frac{n\pi \chi}{4} \right) \cos \left(\frac{3n\pi t}{4} \right)$

317