
Lecture 1

Functions of Two Variables

Understanding the concept of a function of two variables simply requires an understanding of the

concept of a function of a single variable.

Consider the single variable function

y = f(x) .

• x is the independent variable; y is the dependent variable.

• A function f(x) is a rule that gives a unique value y for a

given value of x.

• The domain of f is the set of all input numbers x.

• The range is the set of all output numbers y.

• If the domain is not explicitly specified, it is taken to be the

largest possible set of real numbers.

These same ideas are transferrable to a function of two variables

z = f(x, y) .

For any (x, y) combination, the value of the function z is unique.
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Example: Find the domain and range for the function

z = f(x, y) =
√

16− x2 − y2

The domain is restricted by the necessity to have 16− x2− y2 ≥ 0. Therefore the domain

is x2 + y2 ≤ 16: a disc of radius 4 centred at the origin. The range of f is z ∈ [0, 4].

How do we go about understanding a function of two variables?

One way is to represent the function in 3 dimensions - but we will explore this strategy in Lecture 2.

The other way is to treat z as a function of a single variable by holding one of the two independent

variables constant.
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Example: Returning again to the function z = f(x, y) =
√

16− x2 − y2

If x = 0 , z =
√

16− y2 , −4 ≤ y ≤ 4 .

x = ± 1 , z =
√

15− y2 , −
√

15 ≤ y ≤
√

15 .

x = ± 2 , z =
√

12− y2 , −
√

12 ≤ y ≤
√

12 .

x = ± 3 , z =
√

7− y2 , −
√

7 ≤ y ≤
√

7 .

x = ± 4 , z =
√
−y2 , y = 0 .

HOWEVER: By definition, a function must be single valued. Hence, two functions are

required to give the positive and negative solutions to the square root.

3



Example: Consider a travelling wave, e.g. an ocean wave:

Suppose the surface of the water is at a height

z(x, t) = H +A sin (kx− ωt)

above the bottom, where k =
2π

λ
is the wavenumber; λ is the wavelength; A is the

amplitude; and ω is the angular frequency.

If time t is fixed, z can be investigated to see how it varies with x alone.

Similarly, we could fix x to see how z varies with t alone.
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Lecture 2

3D Cartesian Coordinates

A function of two variables can be visualised by plotting the ordinate (value of the dependent variable,

z) at the locations of the abscissae (values of the two independent variables, (x, y)). The most common

coordinate system in use is the cartesian or rectangular coordinate system. The cartesian system has

three axes (x, y, z) that are mutually perpendicular, with the relative orientations of x, y, and z

following the right hand rule.

The function z = f(x, y) will map out some sort of surface where, in units of the z−axis, z is the

height of the function above the xy plane.

Of course, it is not essential for x and y to be the independent variables and z to the dependent

variable. Depending on the problem or function under investigation, y and z could be the independent

variables, and x could be the dependendent one; or time and displacement might be independent and

momentum dependent.

Drawing the surface is not always easy, but can be made easier with the help of computer packages

such as Matlab and Mathematica. There are however, some simple special cases:
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1. Planes parallel to axis planes

x = constant

= k (say)

y = constant

= k

z = constant

= k
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2. Spheres

A sphere is a surface for which every point (x, y, z) is a fixed distance R from the centre point

(x0, y0, z0). R is the radius of the sphere.

Distance, R =
√

(x− x0)2 + (y − y0)2 + (z − z0)2

So (x− x0)
2 + (y − y0)

2 + (z − z0)2 = R2.

3. Surfaces whose equation has a variable missing

Example: In 2D, z = x2 is a parabola in the xz plane. In 3D it is a surface since y

can take on any value.
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4. Axi-symmetric surfaces (surfaces of revolution - circularly symmetric)

Example: z = x2 + y2 + 5

If we use cylindrical polar coordinates , with

x = r cos θ

y = r sin θ ,

we have

x2 + y2 = r2 (cos2 θ + sin2 θ) = r2 .

So z = r2 + 5

The surface is obtained by rotating this about the z−axis.
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Cross Sections

In lecture 1, we investigated functions of 2 variables by holding one of the two independent variables

constant, and letting the other one vary.

This is equivalent to asking: what is the line formed by allowing the surface z = f(x, y) to intersect

the plane y = c. These curves are called cross-sections.

We can have cross-sections for which x = constant, y = constant, or z = constant. Cross-sections

for which the dependent variable is constant are called contours or level curves.

Example: z = f(x, y) = x2 + y2 + 5

If we take cross-sections x = c, we get curves

z = c2 + y2 + 5

= (c2 + 5) + y2 (parabolae)
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Lecture 3

Contour Diagrams

Quite often it is more helpful to look at the cross-sections of a function rather than a plot of the

surface. In particular, when we look at cross-sections such that z = f(x, y) = c (constant), we are

looking at contours or level curves.

Contour diagrams are used in a multitude of ways: e.g. regional maps giving accumulated rainfall

contours; pressure contours (isobars) on weather maps; height contours on topographical maps.

Question: Contour lines cannot cross. Why not?
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Example: Find the contours for the surface z = f(x, y) = x2 + y2.

Contours are curves formed by the intersection of the surface z = f(x, y) with the hori-

zontal plane z = c.

Contours when z = c = x2 + y2. These are just circles (for positive c).

NOTE: computer programs normally draw contours at uniformly spaced values of c. A

contour diagram of the function above would have the contours bunching up as we move

away from the origin.

Symmetries

Surfaces that have some sort of symmetry property will exhibit this in their contour plots.

Any surface that is axi-symmetric will have circular contours, since its equation must be of the form

z = F (x2 + y2) .

Contours are at z = c ⇒ c = F (x2 + y2).

So x2 + y2 = F−1(c) ⇒ circles.
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Example: Find level curves for the surface z = f(x, y) = exp(−x2−y2+2x+4y−3).

First we look at the argument of the exponential function and complete the square:

−x2 − y2 + 2x+ 4y − 3 = −(x2 − 2x+ 1︸ ︷︷ ︸ −1) + −(y2 − 4y + 4︸ ︷︷ ︸ −4) − 3

= −(x− 1)2 +1 + −(y − 2)2 +4 − 3

= −(x− 1)2 − (y − 2)2 + 2

So the surface can be rewritten

z = exp(−(x− 1)2 − (y − 2)2 + 2)

= e2 e−((x−1)2+(y−2)2)

The contours will be curves of the form (x− 1)2 + (y − 2)2 = constant.

These are circles centred at the point (1,2).

This surface is axisymmetric, but about the line x = 1; y = 2, not the z−axis.
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Even and Odd Symmetry

When dealing with a function of a single variable, an even function exists if f(x) = f(−x)

and an odd function exists if f(x) = −f(−x)

When dealing with a function of two variables exhibiting symmetry, functions can be even in x or y;

or odd in x or y.

Example:

1. even in x and y
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2. even in x and odd in y

3. odd in x and even in y

4. odd in x and y
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Example: z = f(x, y) = x2 − y2 .

This is a surface that is even in x and even in y.

Cross-sections with x = constant are parabolae; similar for y = constant.

Surface is a saddle:

Contours are x2 − y2 = c (rectangular hyperbolae)
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Lecture 4

Linear Functions

For functions of a single variable, y = f(x), f(x) is linear if and only if (iff) it has the form

f(x) = mx+ c .

Note: linear, homogeneous functions have the form

y = f(x) = mx

They are the only functions for which

• f(x+ y) = f(x) + f(y) , and

• f(ax) = a f(x) .

This is not true for any other (i.e. non-linear) functions

A function of two variables, z = f(x, y), is linear iff it has the form

z = f(x, y) = mx+ n y + c

To draw the surface f(x, y), take cross sections:
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Clearly, z = mx+n y+c is a plane with slope m in the x-coordinate , and slope n in the y-coordinate

.

Example:

Find the equation of the plane passing through the three points (0,1,0); (1,0,5); (1,1,3).

The plane has equation z = mx+ n y + c and each point satisfies the equation, so:

0m+ 1n+ c = 0

1m+ 0n+ c = 5

1m+ 1n+ c = 3





This is a system of three linear, simultaneous equations for the three unknown constants

m, n and c. (Study these systematically in algebra section)

But we can solve by substituting. From the 1st equation, c = −n. Then we have

m− n = 5

m+ n− n = 3

}

So m = 3; n = −2; c = 2, and the equation of the plane must be

z = 3x− 2y + 2 .

Contour Diagrams

For the linear function

z = f(x, y) = mx+ n y + c ,

we find contours z = k (say) by solving

k = f(x, y) = mx+ n y + c

or

y =
k − c
n
− m

n
x .
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These are families of straight lines in the x-y plane , uniformly spaced (as k uniformly changes).

The slope of each line is
−m
n

.

Example: Suppose we have a square room 10m× 10m with a heater and 2 exits.

The temperature on the front face increases by 1
2

◦
C per metre, and the temperature at

both exits is 15◦C. Where is the temperature less than 18◦C?

Assume a linear model T (x, y) = mx+ n y + c.

We know that

• on the front face y = 0, T (x, 0) = mx+ c; and slope m = 1
2

◦
C/m

• at (0,0), T = 15◦C = c

• at (10,10), T = 15◦C = 10m+ 10n+ c
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Therefore m =
1

2
and c = 15

⇒ 15 = 10 (
1

2
) + 10n+ 15,

giving n = −1

2
◦C/m.

So

T (x, y) =
1

2
x− 1

2
y + 15 (◦C),

and T < 18 when
1

2
x− 1

2
y + 15 < 18;

i.e. when y > x− 6 .

Question: Is this model a good one?

19



Lecture 5

Functions of 3 or More Variables

These occur often in practice! For example, consider meteorology: pressure P in the atmosphere

depends on x, y, z and time t;

P = f(x, y, z, t)

This is also true for such things as density ρ and temperature T .

But! it is not easy to visualise a function of 3 variables. So how do we do it? One approach is to

do as we did for functions of two variables where we held one variable constant and varied the other

one. With functions of more than two variables we can hold one or more variables constant and draw

contour maps at different values of one of the remaining variables.

Example: Consider pressure in a low-pressure cell in the atmosphere.

Suppose the x and y axes lie along the ground, and the z axis points up corresponding to

altitude.
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Now suppose the pressure is given by

P (x, y, z) = e−αz
(
Pa − P1 e

−(x2+y2)
)

We can draw contour maps for P at increasing heights z

This is one way to help us visualise a function of three variables.

Level Surfaces

For functions of 2 variables we plotted contours: z = f(x, y) has contours, or level curves, when

z = c.

For a function of 3 variables, P = f(x, y, z, ), if we plot P = c = constant, then we get families

of surfaces on which P = constant; these are level surfaces.
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Example: Suppose the temperature in the sun is given by

T (x, y, z) = Ts e
−(x2+y2+z2) .

Level surfaces exist when T (x, y, z) = c, so

c = Ts e
−(x2+y2+z2)

⇒ x2 + y2 + z2 = − ln

(
c

Ts

)
= ln

(
Ts

c

)

So the level surfaces are spheres centred at the origin and having radius
√

ln
(

Ts

c

)
.

Linear Functions of 3 Variables

A linear function will have the form

T (x, y, z) = mx+ n y + p z + q

where m, n, p and q are constants.

The level surface for a linear function are

c = mx+ n y + p z + q

⇒ z = 1
p ((c− q)−mx− n y)

So the level surfaces are planes.
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Example: Find level surfaces for the function T (x, y, z) = x2 + y2 .

We get c = x2 + y2 for the level surfaces. Note that this is independent of z.

Since z does not appear explicitly, the level surfaces are circular cylinders.
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Lecture 6

Level Surfaces of Functions of 3

Variables

One way of representing a surface is as a function of 2 variables;

z = f(x, y) .

But a surface that folds back on itself cannot be written this way, because f would no longer be a

function.

This description of surfaces can be generalised by using functions of 3 variables.

Suppose

P = G(x, y, z) .

The level surfaces of P are c = G(x, y, z), so we have a family of level surfaces for all c. This is a

more general way of describing a surface.

For the particular case of surfaces described by z = f(x, y), these can be thought of as level surfaces

of the function

G(x, y, z) = z − f(x, y)

where the level surface corresponds to c = G(x, y, z) = 0.

Example: Consider a sphere: x2 + y2 + z2 = R2.

This is a compact way of writing the surface, as a level surface of the function G(x, y, z) =

x2 + y2 + z2. Otherwise we would have to write the surface as two functions





z =
√
R2 − x2 − y2 top half

z = −
√
R2 − x2 − y2 bottom half .
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Example: What surface is represented by the level surface

G(x, y, z) = x2 + 2y2 − 3z2 − 2x− 4y = −3 .

Our initial step is to put this into standard form by completing the square.

(x2 − 2x+ 1− 1) + 2(y2 − 2y + 1− 1)− 3z2 + 3 = 0

⇒ (x− 1)2 + 2(y − 1)2 − 3z2 = 0 .

So what do the contours look like? Let z = h (say)

(x− 1)2 + 2(y − 1)2 = 3h2 (6.1)

⇒ (x− 1)2

(
√

3h)2
+

(y − 1)2

(
√

3
2 h)

2
= 1 . (6.2)

The contours are ellipses, centred at the point (x0, y0) = (1,1), with dimension
√

3h and√
3
2 h in the x and y directions respectively.

When h = 0, we get the point (1,1) only, BUT we get this from eqn.(6.1), not eqn.(6.2).

The contours for ±h are identical, so the surface is symmetrical about the x-y plane : i.e.

it is even in z.
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If we take the cross-section at x = 1, we have 3z2 = 2(y− 1)2. These are the straight lines

z = ±
√

2
3(y − 1).

Similarly, if we take the cross-section at y = 1, we have 3z2 = (x − 1)2, which are the

straight lines z = ±
√

1
3(x− 1).

So the surface is an elliptical cone centred at the point (x, y, z) = (1, 1, 0).

Note: Taking cross-sections at x = d 6= 1 gives

(d− 1)2 + 2(y − 1)2 = 3z2

⇒ 3z2

(d−1)2
− 2(y−1)2

(d−1)2
= 1

⇒ z2�q
d−1

3

�
2 − (y−1)2�q

d−1

3

�
2 = 1 .

These cross-sections are hyperbolae. A similar procedure can be used to determine the

cross-sections at y = t 6= 1.
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Example: What is the surface y2 + z2 − 4y − 2z = −1 .

Again we begin by completing the squares to give

(y2 − 4y + 4− 4) + (z2 − 2z + 1− 1) = −1

⇒ (y − 2)2 + (z − 1)2 = 4 = G(x, y, z) .

Notice that

1. the resulting equation is independent of x, and

2. taking height contours z = h will not help much.

The first point suggests that the surface is symmetric about the yz plane, since the cross-

sections will be the same for any x. So what do the cross-sections look like?

For every x = c, we get circles of radius 2, centred at (y, z) = (2, 1). The surface is

therefore a circular cylinder.
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Lecture 7

Vectors

In order to do calculus with surfaces, we need an efficient way of describing where points on a line or

surface are.

Position vectors are the best way of doing this.

Geometric Description of Vectors

Geometrically, physical vectors are thought of as entities having length and direction.

Two vectors are equal iff they have the same length and direction.

Addition: Vectors a
˜

and b
˜

are added head-to-tail:
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Scalar Multiplication: Multiplying a vector a
˜

by a constant c results in a change in the length of the

vector to c × length(a
˜
). There is no change in the direction unless c < 0 whereupon the direction is

reversed.

Subtraction: Turn it into addition by making use of scalar multiplication: c
˜

= a
˜
− b
˜

= a
˜

+ (−b
˜
)

Two vectors are parallel if one is a scalar multiple of the other: i.e. u
˜

= λ v
˜
.

Analytic Description of Vectors

It is often inconvenient only to use geometric vectors. We can instead use vectors by referring to their

components in some agreed directions.

e.g. take cartesian coordinates x, y, z:
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We setup unit vectors (i.e. they have length = 1) ı̂, ̂, k̂ in the x-, y-, and z- directions respectively.

By vector addition we can think of vector v
˜

as being

v
˜

= v1 ı̂ + v2 ̂ + v3 k̂

where v1, v2, and v3 are the components of v
˜

in the x, y, and z directions. This is the analytic

description.
Two vectors a˜ = a1 ı̂ + a2 ̂ + a3 k̂

and b˜ = b1 ı̂ + b2 ̂ + b3 k̂ .

are equal iff their components are equal:

a1 = b1 ; a2 = b2 ; a3 = b3 .

Addition: Add two vectors a
˜

and b
˜

by adding their components:

a
˜

+ b
˜

= (a1 ı̂ + a2 ̂ + a3 k̂) + (b1 ı̂ + b2 ̂ + b3 k̂)

= (a1 + b1) ı̂ + (a2 + b2) ̂ + (a3 + b3) k̂

Scalar Multiplication: Multiplying a vector a
˜

by a constant c results in each component of a
˜

being

multiplied by c:

ca
˜

= c(a1 ı̂ + a2 ̂ + a3 k̂)

= (c a1) ı̂ + (c a2) ̂ + (c a3) k̂

Subtraction: Subtract two vectors a
˜

and b
˜

by subtacting their components:

a
˜
− b
˜

= (a1 ı̂ + a2 ̂ + a3 k̂)− (b1 ı̂ + b2 ̂ + b3 k̂)

= (a1 − b1) ı̂ + (a2 − b2) ̂ + (a3 − b3) k̂
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Position Vectors

Normally we don’t say where vectors are in space. However, we may need to find points relative to a

given coordinate system.

If P (x, y, z) is the point in space, then a position vector is defined as

r
˜

=
−−→
OP = x ı̂ + y ̂ + z k̂

i.e. one end is fixed at the origin.

Displacement Vectors

A displacement vector is similar to a position vector in that it joins two points, however the start

point is not required to be the origin. Hence a displacement vector is obtained by subtracting two

position vectors.

If A(x1, y1, z1) and B(x2, y2, z2) represent the terminal points of two position vectors, then a displace-

ment vector r
˜

from A to B is given by

r
˜

=
−−→
AB = B

˜
−A
˜

= (x2 − x1) ı̂ + (y2 − y1) ̂ + (z2 − z1) k̂

This says that two vectors having the same direction and magnitude, are considered to be the same

even if they do not coincide.
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Unit Vectors

Unit vectors have length = 1.

Suppose v
˜

= v1 ı̂ + v2 ̂ + v3 k̂ .

The length of v
˜

is given by

||v
˜
|| =

(
v2
1 + v2

2 + v2
3

)1/2
.

A unit vector pointing in the same direction as v
˜

is

êv =
v˜||v˜||

=
v1 ı̂ + v2 ̂ + v3 k̂
(
v2
1 + v2

2 + v2
3

)1/2

=
v1(

v2
1 + v2

2 + v2
3

)1/2
ı̂ +

v2(
v2
1 + v2

2 + v2
3

)1/2
̂ +

v3(
v2
1 + v2

2 + v2
3

)1/2
k̂ .

Note: A unit vector is dimensionless.

n-dimensional Vectors

It is not necessary for a vector to represent a point in space, nor for it to be of 3 dimensions or less.

For example, a 4-dimensional vector (t, x, y, z) might represent an ‘event’ in space-time; or a 5-

dimensional vector (x, y, z, φ, ψ) might represent the location and orientation of an electrode.

In general, a vector can have n independent components and subject to a set of linear algebra axioms,

can be operated on using vector addition and scalar multiplication. Depending on the value of n,

various other operations may be permissible.

In the following chapters we will be interested in operations relevant to n=3, and in later chapters we

will consider arbitrary n when we look at optimisation.
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Lecture 8

Invariance

We have defined a vector as a quantity having magnitude and direction. This is an incomplete

definition.

The additional condition that a vector must not depend on the choice of orientation of the coordinate

axes makes the definition complete.

Consider a position vector r
˜

= x ı̂ + y ̂ in a standard Cartesian coordinate system.

Now suppose that we want to find the components of r
˜

in a different coordinate system that is obtained

by rotating the x and y axes through an angle θ to give the new axes x′ and y′ respectively.
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What is r
˜

in this new system?

So

x′ = x cos θ + y sin θ

y′ = y cos θ − x sin θ

or

[
x′

y′

]
=

[
cos θ sin θ

− sin θ cos θ

] [
x

y

]
.

Now, if a pair of quantities ax and ay transform into a
′

x and a
′

y respectively using the same transfor-

mation as on r
˜

above, then ax and ay are the components of a vector a
˜
.

The magnitude of a
˜

is a scalar quantity, invariant to the rotation of the coordinate system. Similarly,

direction is invariant to the rotation as it also doesn’t change.
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Example:

Let a
˜

=
√

3 ı̂ + 4 ̂ ∴ ‖a
˜
‖ =

√
19 .

What are the components of a
˜

if the coordinate system is rotated through π
6 radians?



a
′

x

a
′

y


 =




cos
π

6
sin

π

6

− sin
π

6
cos

π

6






ax

ay




=




√
3

2

1

2

− 1

2

√
3

2







√
3

4




=




7

2

3
√

3

2




∴ a
˜
′ =

7

2
ı̂
′ +

3
√

3

2
̂
′

Finally,

‖a ′

˜
‖ =

√√√√
(

7

2

)2

+

(
3
√

3

2

)2

=
√

19

As expected then, the direction (a diagram will confirm this) and magnitude remain

unchanged after the rotation of the coordinate axes.

Note: The dot product and the cross product are invariant under a rotation of the coordinate system

in 3-space.
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Lecture 9

The Dot (Scalar) Product

The dot (scalar) product takes two vectors v
˜

and w
˜

and performs a binary operation with them that

results in a scalar.

Geometric Description of Dot Product

v
˜

· w
˜

= ‖v
˜
‖ ‖w
˜
‖ cos θ

where θ is the angle between the vectors v
˜

and w
˜

when drawn tail-to-tail.

If v
˜

and w
˜

are at right angles, then cos θ = 0.

So two vectors v
˜

and w
˜

are perpendicular (or

orthogonal) iff

v
˜

· w
˜

= 0 .

Length

The length of a vector can be calculated in terms of the dot product.

v˜ · v˜ = ‖v˜‖ ‖v˜‖ cos 0

But cos 0 = 1, so

‖v˜‖ =
√

v˜ · v˜ .

Note: a
˜

· b
˜

= b
˜

· a
˜

(commutative)
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Example: Prove Pythagaros’ Theorem.

Draw vectors a
˜

and b
˜

tail-to-tail, and perpendicular.

b˜ = a˜ + c˜

⇒ c˜ = b˜ − a˜ .

So c˜ · c˜ = (b˜ − a˜) · (b˜ − a˜)

= b˜ · b˜ − b˜ · a˜ − a˜ · b˜ + a˜ · a˜ .

But a˜ · b˜ = 0 here,

so ‖c˜‖
2 = ‖a˜‖

2 + ‖b˜‖
2

Example: Prove the Law of Cosines.

This time vectors a
˜

and b
˜

are tail-to-tail, but are not necessarily perpendicular.

c˜ · c˜ = (b˜ − a˜) · (b˜ − a˜)

= a˜ · a˜ + b˜ · b˜ − a˜ · b˜ − b˜ · a˜

= a˜ · a˜ + b˜ · b˜ − 2 a˜ · b˜

so ‖c˜‖
2 = ‖a˜‖

2 + ‖b˜‖
2 − 2 ‖a˜‖ ‖b˜‖ cos θ
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Analytic Description of Dot Product

Since ı̂, ̂ and k̂ are orthogonal, then

ı̂ · ̂ = 0 ; ̂ · k̂ = 0 ; and ı̂ · k̂ = 0 .

Furthermore, they are unit vectors, so

ı̂ · ı̂ = 1 ; ̂ · ̂ = 1 ; and k̂ · k̂ = 1 .

Let’s look at the dot product of two arbitrary vectors v
˜

= v1 ı̂+v2 ̂+v3 k̂ and w
˜

= w1 ı̂+w2 ̂+w3 k̂ :

v
˜

· w
˜

= (v1 ı̂ + v2 ̂ + v3 k̂) · (w1 ı̂ + w2 ̂ + w3 k̂)

= v1w1 (ı̂ · ı̂) + v1w2 (ı̂ · ̂) + v1w3 (ı̂ · k̂)

+ v2w1 (̂ · ı̂) + v2w2 (̂ · ̂) + v2w3 (̂ · k̂)

+ v3w1 (k̂ · ı̂) + v3w2 (k̂ · ̂) + v3w3 (k̂ · k̂)

So
v
˜

· w
˜

= v1w1 + v2w2 + v3w3

Components as Dot Product

if v
˜

= v1 ı̂ + v2 ̂ + v3 k̂ , it can readily be seen that

v1 = v
˜

· ı̂ ; v2 = v
˜

· ̂ ; and v3 = v
˜

· k̂ .
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Projections

Suppose êu is a unit vector in some arbitrary direction. Then v
˜

· êu gives the projection of v
˜

onto

êu; i.e. the amount of v
˜

in the êu direction.

Unit Vectors

We can construct a unit vector êu pointing in the same direction as u
˜

by writing

êu =
u
˜‖u
˜
‖ =

u
˜√
u
˜

· u
˜
.

Example: Work.

Suppose F
˜

is a constant vector force (i.e. its length and direction don’t change with space

or time).

Then the work done by F
˜

on a particle moving an amount ∆r
˜

is W
˜

= F
˜

· ∆r
˜
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Lecture 10

The Cross (Vector) Product

It has proved important in mechanics to define a binary operation between two vectors v
˜

and w
˜

that

results in a third vector.

Geometric Description of Cross Product

v
˜
×w
˜

= ‖v
˜
‖ ‖w
˜
‖ sin θ n̂

where n̂ is a unit normal vector that

is perpendicular to the plane formed by

the vectors v
˜

and w
˜

when drawn tail-

to-tail.

Its direction is given by the right-

hand rule.

Notes:

• If v
˜

and w
˜

are parallel, then v
˜
×w
˜

= 0
˜

since sin θ = 0.

[0
˜

is the zero vector; 0
˜

= 0ı̂ + 0̂ + 0k̂ ]

• Since the direction of v
˜

and w
˜

is given by the right-hand rule,

(v
˜
×w
˜

) = −(w
˜
× v
˜
)

[anti-commutative]
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Example: Angular velocity

For the motion of a circle of radius a,

Quantity Magnitude Units

Speed ‖v˜‖ = v length/time

Radius ‖r˜‖ = a length

Angular Speed ‖ω˜‖ = ω
(

radians
second

)
= time−1

So dimensionally, ‖v
˜
‖ ∝ ‖w

˜
‖ . ‖r

˜
‖.

But v
˜

and r
˜

are vectors, so angular velocity w
˜

must be a vector too.

By convention,

v
˜

= w
˜
× r
˜
.

Analytic Description of Cross Product

Since ı̂, ̂, and k̂ are orthogonal,

ı̂× ı̂ = 0
˜

; ̂× ̂ = 0
˜

; and k̂ × k̂ = 0
˜
.

Furthermore,
ı̂× ̂ = ‖ı̂‖ · ‖̂‖ sin π

2 k̂ = k̂ ,

̂× k̂ = ı̂ ,

and k̂ × ı̂ = ̂ .
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Let’s look at the cross product of two arbitrary vectors v
˜

= v1 ı̂+v2 ̂+v3 k̂ and w
˜

= w1 ı̂+w2 ̂+w3 k̂ :

v
˜
×w
˜

= (v1 ı̂ + v2 ̂ + v3 k̂)× (w1 ı̂ + w2 ̂ + w3 k̂)

= v1w1 (ı̂× ı̂) + v1w2 (ı̂× ̂) + v1w3 (ı̂× k̂)

+ v2w1 (̂× ı̂) + v2w2 (̂× ̂) + v2w3 (̂× k̂)

+ v3w1 (k̂ × ı̂) + v3w2 (k̂ × ̂) + v3w3 (k̂ × k̂)

= v1w2 k̂ − v1w3 ̂

− v2w1 k̂ + v2w3 ı̂

+ v3w1 ̂− v3w2 ı̂

So v
˜
×w
˜

= (v2w3 − v3w2) ı̂ + (v3w1 − v1w3) ̂ + (v1w2 − v2w1) k̂

This formula can be easily remembered in the form of a matrix determinant:

v
˜
×w
˜

=

∣∣∣∣∣∣∣

ı̂ ̂ k̂

v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣∣
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Example: Moment of a force (torque)

Moment of force τ
˜

(torque) on P about O is

τ
˜

= r
˜
× F
˜
.

Equation of a Plane

Suppose r
˜

is the position vector of a point P (x0, y0, z0) on the plane; a
˜

is the position vector to some

other arbitrary point A(x, y, z) on the plane; and n̂ = n1 ı̂ +n2 ̂ +n3 k̂ is a unit vector normal to the

plane.
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Then geometrically,

(r
˜
− a
˜
) · n̂ = 0 Equation of Plane

⇒ n1 (x− x0) + n2 (y − y0) + n3 (z − z0) = 0

Example: Find the plane through the points A(0, 1, 0); B(1, 0, 5); C(1, 1, 3).

n̂ ∝ −−→
AB ×−−→AC

= (1 ı̂− 1 ̂ + 5k̂)× (1 ı̂ + 0 ̂ + 3k̂)

=

∣∣∣∣∣∣∣

ı̂ ̂ k̂

1 −1 5

1 0 3

∣∣∣∣∣∣∣

= −3 ı̂ + 2 ̂ + 1k̂ .

Now the equation of the plane is (r
˜
− a
˜
) · n̂ = 0, so

((x− 0) ı̂ + (y − 1) ̂ + (z − 0) k̂) · (−3 ı̂ + 2 ̂ + 1k̂) = 0

⇒ −3(x− 0) + 2(y − 1) + 1(z − 0) = 0

⇒ −3x+ 2y + z = 2
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Lecture 11

Calculus with Vectors

We want to be able to differentiate and integrate certain functions along some path in 3D space.

So we need to know how to represent general curves in 3D.

We can think of a curve C as a collection of points P (x, y, z), and thus write a formula to represent

the position vector r
˜

of each point.

Now suppose that as some real variable t varies from t = t0 to t = tf , the point P moves from one

end of the curve to the other end. Then point P is a function of t, and is given by P (x(t), y(t), z(t)).

t is called a parameter.

So the position vector r
˜

is now a function of t ;

r
˜
(t) = x(t) ı̂ + y(t) ̂ + z(t) k̂ , t0 ≤ t ≤ tf

This is called a parametrisation of C.
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Example: Parameterise the triangular path ABCA in the xy plane.

One way of doing this is

−−→
AB :

x(t) = t

y(t) = 0

}
0 ≤ t ≤ 2

−−→
BC :

x(t) = 4− t
y(t) = t− 2

}
2 ≤ t ≤ 3

−→
CA :

x(t) = 4− t
y(t) = 4− t

}
3 ≤ t ≤ 4

Or we could write this as





r˜(t) = t ı̂ + 0 ̂ , 0 ≤ t ≤ 2

r˜(t) = (4− t) ı̂ + (t− 2) ̂ , 2 ≤ t ≤ 3

r˜(t) = (4− t) ı̂ + (4− t) ̂ , 3 ≤ t ≤ 4

The advantage of representing a curve parametrically is that very complicated curves can still be

represented by functions x(t), y(t), z(t) even if they self-intersect.
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Example: Parametrise a circle of radius a.

x(t) = a cos t

y(t) = a sin t

}
0 ≤ t ≤ 2π

Notice that the parametric representation is not unique; e.g. we still get a circle if we

write

x(t) = a cosωt

y(t) = a sinωt

}
0 ≤ t ≤ 2π

ω

Notice though that if t actually represents time, then the speed around the circle changes.

Example: Parametrise a spiral up the z-axis.

x(t) = a cos t

y(t) = a sin t

z(t) = c t





0 ≤ t ≤ tf

i.e.

r
˜
(t) = a cos t ı̂ + a sin t ̂ + c t k̂ .
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Straight Lines

Suppose we want to find the equation of a straight line joining the points A and B, which have

respective position vectors a
˜

and b
˜
.

We begin by letting r
˜

= x ı̂ + y ̂ + z k̂ be the position vector of a typical point P on the straight line.

Now if l
˜

is any vector pointing along the direction of the line AB, then the equation of the line is

r
˜
(t) = a

˜
+ t l
˜
.

In particular, one choice is l
˜

= b
˜
− a
˜
, so

r
˜
(t) = a

˜
+ t (b

˜
− a
˜
) , 0 ≤ t ≤ 1

Example: Find the equation of the straight line from A(3,−1, 6) to B(4, 4, 8).

a
˜

= 3 ı̂− 1 ̂ + 6k̂

b
˜

= 4 ı̂ + 4 ̂ + 8k̂

So r
˜
(t) = (3 ı̂− 1 ̂ + 6k̂) + t (1 ı̂ + 5 ̂ + 2k̂), or

x(t) = 3 + t

y(t) = −1 + 5t

z(t) = 6 + 2t





0 ≤ t ≤ 1
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Lecture 12

Velocity and Acceleration

A particle moves along path C in 3D space, and at time t its position vector is

−−→
OP = r

˜
(t) .

Suppose that at a slightly later time t+ ∆t, the particle has a new position vector

−−→
OQ = r

˜
(t+ ∆t) .

In the time interval ∆t, the particle has moved through a displacement

∆r
˜

= r
˜
(t+ ∆t)− r

˜
(t) ,
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and the average velocity vector over the time interval ∆t is

1

∆t
∆r
˜

=
r
˜
(t+ ∆t)− r

˜
(t)

∆t
.

To find the instantaneous velocity vector, we let the time interval tend to zero, such that

v
˜
(t) = lim

∆t→0

r
˜
(t+ ∆t)− r

˜
(t)

∆t

=
dr
˜
(t)

d t

= r
˜
′(t)

Note: The instantaneous velocity vector v
˜
(t) is tangent to the particle’s path C.

v
˜
(t) =

dr
˜
(t)

d t
=

d

d t

[
x(t) ı̂ + y(t) ̂ + z(t) k̂

]

In the Cartesian coordinate system, the unit vectors ı̂, ̂, and k̂ are constant vectors (this is not true

for other coordinate systems), so

v
˜
(t) =

[
x′(t) ı̂ + y′(t) ̂ + z′(t) k̂

]

i.e. we differentiate each component of the position vector.

In a similar way, we can define the acceleration vector to be

a
˜
(t) = lim

∆t→0

v
˜
(t+ ∆t)− v

˜
(t)

∆t
,

so

a
˜
(t) =

dv
˜
(t)

d t
=

d2r
˜
(t)

d t2
.
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Example: Motion in a circle of radius b

The position vector of the point P on a circle is

r
˜
(t) = b cosωt ı̂ + b sinωt ̂ ,

so the velocity vector is

v
˜
(t) = −b ω sinωt ı̂ + b ω cosωt ̂ ,

and the acceleration vector is

a
˜
(t) = −b ω2 cosωt ı̂− b ω2 sinωt ̂

= −ω2(b cosωt ı̂ + b sinωt ̂)

= −ω2r
˜
(t) .

This implies that acceleration points in the opposite direction to the position vector ⇒
centripetal acceleration.
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Length of a Curve

For very small time intervals ∆t, the length of an arbitrary segment of curve from P to Q is approxi-

mately ‖∆r
˜
‖. This gets more exact as ∆t→ 0.The total length of the curve is then approximately

# of segments∑

i=1

‖∆ri

˜
‖ .

In the limit (as the segment lengths → 0, or equivalently, we have infinitely many of them),

Length =

∫

curve
‖dr
˜
‖

=

∫ b

a

∥∥∥∥
dr
˜
d t

∥∥∥∥ d t

=

∫ b

a
‖v
˜
(t)‖d t

Example: Find the length of a circle of radius b.

r
˜
(t) = b cos t ı̂ + b sin t̂ , (0 ≤ t ≤ 2π)

⇒ v
˜
(t) = −b sin t ı̂ + b cos t ̂ .

‖v
˜
(t)‖ =

√
v
˜

· v
˜

=

√
b2 (sin2 t+ cos2 t)

= b

So the length of a circle of radius b is

Length =

∫ 2π

0
b d t = 2π b .
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Lecture 13

The Partial Derivative

We have looked at surfaces

z = f(x, y) .

We might want to know how fast the surface changes, and in what direction the maximum rate of

change occurs (a vector).Suppose we fixed y = constant. Then we could calculate the rate of change

of f with x (holding y constant). Such an operation is the definition of the partial derivative of z with

respect to x

∂f

∂x
= lim

∆x→0

f(x+ ∆x, y)− f(x, y)

∆x
.

Similarly, we can hold x constant, and define the partial derivative of f with respect to y

∂f

∂y
= lim

∆y→0

f(x, y + ∆y)− f(x, y)

∆y
.

Quite often the partial derivatives are written using subscript notation:

∂f

∂x
= fx

∂f

∂y
= fy

So how do we compute partial derivatives? Easy ! As the definitions imply, hold one of the variables

constant, and differentiate with respect to the remaning variable.
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Example: Find the partial derivatives of f(x, y) = sin(x+ y) + ex + ey.

∂f

∂x
= cos(x+ y) + ex

∂f

∂y
= cos(x+ y) + ey .

Example: An equation of the form

∂h

∂t
+ c

∂h

∂x
= 0

is called a first-order wave equation. It arises in hydraulics, gas flow, etc.

Show that it is satisfied by any function of the form

h = h(x, t) = f(x− c t) .

The easiest approach to this is probably to introduce a new variable η = x− c t. So now

h = f(η) .

By the chain rule





∂h

∂x
=

∂f

∂η

∂η

∂x

∂h

∂t
=

∂f

∂η

∂η

∂t

⇒





∂h

∂x
=

∂f

∂η
(1)

∂h

∂t
=

∂f

∂η
(−c)

⇒ ∂h

∂t
=

∂h

∂x
(−c)

⇒ ∂h

∂t
+ c

∂h

∂x
= 0
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Meaning of the Partial Derivative

For z = f(x, y), ∂f
∂x is the rate of change of height z, keeping y constant:

i.e. how fast z changes across a cross-section y = c.

Alternatively, you can think of partial derivatives of z = f(x, y), as the rate at which you cross

contours of f , in directions parallel to the axes.
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Partial Derivatives in more than Two Variables

The process is simply an extension of the two variable case: hold all variables constant except for one,

and then differentiate with respect to this remaining variable.

Example: Suppose pressure in the atmosphere is

p(x, y, z) =
[
p0 + p1 e

−α(x2+y2)
]
e−βz .

Find all the partial derivates of p.

∂p

∂x
= −2αx p1e

−α(x2+y2) e−βz

∂p

∂y
= −2α y p1e

−α(x2+y2) e−βz

∂p

∂z
= −β

[
p0 + p1 e

−α(x2+y2)
]
e−βz
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Lecture 14

The Tangent Plane

If z = f(x, y) is a smoothly curving surface [its partial derivatives fx and fy are continuous and well

behaved], then we will expect that by looking at smaller and smaller portions of the surface, it will

look more and more like a plane.

• The plane will be tangent to the real surface at some particular point (x, y) = (a, b).

• This plane is called the tangent plane.

• It just meets the surface at the point (x, y, z) = (a, b, f(a, b)).

• The tangent plane is an approximation to the true surface z = f(x, y) near the point (a, b).
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How do we find the equation of the tangent plane? We know

• the approximating plane must have the general form z = mx+ n y + c ; and

• the plane touches the true surface when x = a; y = b; z = f(a, b).

This implies that f(a, b) = ma+ n b+ c ,

so c = f(a, b)−ma− n b ,

and the equation of the plane becomes

z = f(a, b) +m(x− a) + n(y − b) .

Now we want the tangent plane to have the same slopes at point (a, b) that the real surface has. So

x-slope : fx(a, b) = m ,

y-slope : fy(a, b) = n ,

and the equation of the tangent plane to z = f(x, y) at point (a, b) is

z = f(a, b) + (x− a) fx(a, b) + (y − b) fy(a, b) .

Example: Calculate the tangent plane to the surface

z = f(x, y) = x3 + y3

at the point (x, y) = (1, 2).

f(1, 2) = 13 + 23 = 9

fx(1, 2) = 3x2|x=1,y=2 = 3

fy(1, 2) = 3y2|x=1,y=2 = 12

So the tangent plane is

z = 9 + 3(x− 1) + 12(y − 2) ,

or

z = 3x+ 12y − 18 .
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Local Linearisation

If we approximate z = f(x, y) (the true surface) with the tangent plane near (x, y) = (a, b), then we

are approximating the real function f(x, y) by the linear function

z ≈ f(a, b) + (x− a) fx(a, b) + (y − b) fy(a, b)

at (x, y) = (a, b).

This is called local linearisation.

We can also do the same thing for functions of 3 (or more) variables. For example, we may wish to

approximate f(x, y, z) by its tangent plane near (x, y, z) = (a, b, c).

The local linearisation becomes

T ≈ f(a, b, c) + (x− a) fx(a, b, c) + (y − b) fy(a, b, c) + (z − c) fz(a, b, c)

The Differential

Taking the two variable local linearisation, suppose we write

x− a = ∆x

y − b = ∆y

z − f(a, b) ≃ ∆f .

Then the equation for the tangent plane

z = f(a, b) + (x− a) fx(a, b) + (y − b) fy(a, b)

becomes

∆f ≃ ∆x fx(a, b) + ∆y fy(a, b) . (14.1)

This becomes exact as the small changes ∆x and ∆y approach zero. In this case we can write

lim
∆x→0

(∆x) = dx

lim
∆y→0

(∆y) = dy

and

∆f → df .

So we get

df = fx(a, b) dx+ fy(a, b) dy the differential.
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Quite often differentials are used to compute the increment in the value of a function due to increments

in the independent variable(s).

Example: A cylindrical can is designed to have a radius r0 = 10 cm, and a height

h0 = 20 cm. However, the actual radius is 11 cm and the actual height is 21 cm. Find the

approximate volume difference and compare it with the actual volume difference.

To find the approximate volume difference we use the approximate differential (eqn 14.1)

and the volume formula for a cylinder:

V = f(r, h) = π r2 h .

Then

∆V ≃ ∆r fr(r0, h0) + ∆h fh(r0, h0)

= ∆r (2π r h)|r=10,h=20 + ∆h (π r2)|r=10,h=20

= (1)(400π) + (1)(100π)

= 500π

≈ 1570 cm3 .

Now, to find the exact change in volume we simply compute

f(11, 21)− f(10, 20) = π
(
112 × 21− 102 × 20

)

= 541π

≈ 1700 cm3 .
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Lecture 15

The Directional Derivative

For the surface z = f(x, y), the partial derivatives fx and fy tell us the rate of change of the surface

height z, parallel to the x and y axes respectively.

But now, suppose we want to know the rate of change of z in some other direction.

Suppose our direction is described by the unit vector û

û = u1 ı̂ + u2 ̂

Draw contours of f :

Rate of change of z in the direction of û

≈ z(at point Q)− z(at point P )

distance PQ

⇒ ∆z

∆s
≃ f(Q)− f(P )

∆s

which becomes exact as ∆s→ 0.

We then define the directional derivative at point P (a, b) in the direction û as

∂z

∂s
= lim

∆s→0

f(Q)− f(P )

∆s
.
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But f(Q)− f(P ) ≈ ∆f , and from the equation of the tangent plane (or the differential as ∆s→ 0)

f(Q)− f(P ) ≈ fx(a, b) ∆x+ fy(a, b) ∆y

So
∂z

∂s
= lim

∆s→0

[
fx(a, b)

∆x

∆s
+ fy(a, b)

∆y

∆s

]
.

By Pythagoras’ theorem, (∆x)2 + (∆y)2 = (∆s)2.

Furthermore,

∆x ≃ u1 ∆s

∆y ≃ u2 ∆s .

Check:

(∆x)2 + (∆y)2 = (u2
1 + u2

2) (∆s)2

= ‖û‖2 (∆s)2

= (∆s)2 .

Thus, by letting ∆s→ ds→ 0, we get the directional derivative in the direction û

∂z

∂s
= fx(a, b) u1 + fy(a, b) u2
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This can also be written as

∂z

∂s
= [fx(a, b) ı̂ + fy(a, b) ̂] · [u1 ı̂ + u2 ̂] .

By defining the gradient vector as

grad f ≡ ∇f =
∂f

∂x
ı̂ +

∂f

∂y
̂

we can now define the directional derivative in the direction û

∂z

∂s
= ∇f · û at the point P (a, b) .

Example: Find the derivative of z = f(x, y) = x2 + y2 in the direction 3 ı̂ + 4 ̂, at the

point (2,2).

We begin by creating the unit vector

û =
u
˜‖u
˜
‖ =

3 ı̂ + 4 ̂√
32 + 42

=
1

5
(3 ı̂ + 4 ̂) .

Next we create the gradient vector

∇f =
∂f

∂x
ı̂ +

∂f

∂y
̂

= 2x ı̂ + 2y ̂

and evaluate it at the point (2,2), giving

∇f = 4 ı̂ + 4 ̂ .

So the directional derivative in the direction of û is

∂f

∂s
= (4 ı̂ + 4 ̂) ·

1

5
(3 ı̂ + 4 ̂)

=
12 + 16

5

=
28

5
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The Meaning of Gradient

At the point (a, b), the vector grad f points at right angles to the contour (level curve of f) that passes

through (a, b).

Its magnitude ‖grad f‖ gives us the maximum possible rate of change of f . The direction corresponding

to this maximum rate of change is normal to the level curves of f .

The Meaning of Directional Derivative

If the gradient gives us the maximum possible rate of change of f and its direction, then the directional

derivative gives the component of the gradient in the direction of the unit vector û , and thus is a

projection.

So ∇f · û = ‖∇f‖ ‖û‖ cos θ

= ‖∇f‖ cos θ

If θ =





0 , the directional derivative is a maximum

π
2 and 3π

2 , the directional derivative equals 0

π ,
the directional derivative is a minimum

and equals− ‖∇f‖

Since the directional derivative is zero for θ = π
2 and 3π

2 , we expect no change in f in these directions

⇒ constant f ⇒ contours.
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Lecture 16

The Gradient and Directional

Derivative in 3D Space

Now suppose we have T = f(x, y, z) and we draw level surfaces of T .

Suppose P is the point (a, b, c), and û is the unit vector û = u1 ı̂ + u2 ̂ + u3 k̂ ; ‖û‖ = 1 .

Then as before, we can define the directional derivative in the direction û .

∂T

∂s
= lim

∆s→0

f(Q)− f(P )

∆s
.

Now we have by Pythagoras’ theorem, (∆x)2 + (∆y)2 + (∆z)2 = (∆s)2 in 3D. So

∆x ≃ u1 ∆s

∆y ≃ u2 ∆s

∆z ≃ u3 ∆s .

Using local linearisation in 3D,

f(Q)− f(P ) = ∆f

= fx(a, b, c) ∆x+ fy(a, b, c) ∆y + fz(a, b, c) ∆z .
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So
∆T

∆s
≈ 1

∆s
(fx(a, b, c) ∆x+ fy(a, b, c) ∆y + fz(a, b, c) ∆z) at P

= fx(a, b, c) u1 + fy(a, b, c) u2 + fz(a, b, c) u3 .

As usual, this becomes exact as ∆s→ 0.

As for the 2D case, we now define the 3D gradient vector

grad f ≡ ∇f =
∂f

∂x
ı̂ +

∂f

∂y
̂ +

∂f

∂z
k̂

and then the directional derivative in the direction û becomes

∂T

∂s
= ∇f · û at the point P (a, b, c)

Note that grad f points at right angles to level surfaces of f (in direction of most rapid increase of f).

Example: Find a unit vector that is normal to the surface z = x2 + y2 at the point

(x, y) = (1, 2).

The surface is a level surface of the function f(x, y, z) = z − x2 − y2 . The vector ∇f is

perpendicular to the level surface f = 0, so our unit normal vector to the surface is

n̂ = ± ∇f
‖∇f‖ at (1, 2)

= ± −2xı̂− 2ŷ + 1k̂√
4x2 + 4y2 + 1

at (1, 2)

= ± 1√
21

[
−2ı̂− 4̂ + k̂

]
.
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Example: Find the tangent plane to the sphere

x2 + y2 + z2 = 25

at the point (x, y, z) = (1, 2,
√

20) on the sphere.

We could do this by writing

z = f(x, y) =
√

25− x2 − y2

(top half) and use the previous formula for the tangent plane.

Alternatively, we could calculate the normal to the sphere:

n̂ =
∇(x2 + y2 + z2)

‖∇(x2 + y2 + z2)‖ at (1, 2,
√

20)

=
2x ı̂ + 2y ̂ + 2z k̂√

4(x2 + y2 + z2)
at (1, 2,

√
20)

=
1

5

[
1 ı̂ + 2 ̂ +

√
20 k̂

]
.

The tangent plane has the equation

(r
˜
− a
˜
) · n̂ = 0

⇒
[
(x− 1) ı̂ + (y − 2) ̂ + (z −

√
20) k̂

]
·

1

5

[
1ı̂ + 2̂ +

√
20 k̂

]
= 0

⇒ (x− 1) + 2(y − 2) +
√

20 (z −
√

20) = 0

⇒ x+ 2y +
√

20 z = 25 .
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Lecture 17

The Chain Rule

Suppose we are moving in some path along a surface z = f(x, y).

So x ≡ x(t) and y ≡ y(t), and along the path on the surface

z(t) = f(x(t), y(t)) .

Suppose we want to know d z
d t .

If we approximate the surface by its tangent plane (i.e. the local linearisation), then

∆z ≈ fx ∆x+ fy ∆y ,

(which becomes exact as ∆x, ∆y → 0)

⇒ ∆z

∆t
≈ fx

∆x

∆t
+ fy

∆y

∆t
.

Now let ∆t→ 0, then

d z

d t
=

∂f

∂x

d x

d t
+
∂f

∂y

d y

d t
. chain rule
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Example: Find d z
d t if z = f(x, y) = ex + sin y2, x = cos t, and y = t− 2.

Method 1: substitute in for x and y to give

z(t) = ecos t + sin((t− 2)2)

⇒ d z

d t
= − sin t ecos t + 2(t− 2) cos((t− 2)2)

Method 2:

d z

d t
=

∂f

∂x

d x

d t
+
∂f

∂y

d y

d t

= ex (− sin t) + 2y cos(y2) (1)

= − sin t ecos t + 2(t− 2) cos((t− 2)2) .

In 3D, suppose we have

p = f(x, y, z)

and we now travel through space on some curve. If we parametrise the curve as x = x(t), y = y(t), z =

z(t), then

p(t) = f(x(t), y(t), z(t)) .

The chain rule then becomes

d p

d t
=

∂f

∂x

d x

d t
+
∂f

∂y

d y

d t
+
∂f

∂z

d z

d t
.

We can write this as

d p

d t
=

(
∂f

∂x
ı̂ +

∂f

∂y
̂ +

∂f

∂z
k̂

)
·

(
d x

d t
ı̂ +

d y

d t
̂ +

d z

d t
k̂

)

so

d p

d t
= ∇f ·

d r
˜
d t

. chain rule

Alternatively we can write the chain rule in differential form as

d f = ∇f · d r
˜
.

69



This is just the differential that we discussed in the context of tangent planes.

Example: Suppose a fly moves along the path

r
˜
(t) = b cosωt ı̂ + b sinωt ̂ + c t k̂ .

The temperature in the room is

T (x, y, z) = T0 + T1

(
x+ y + z

L

)
.

What rate of change of temperature is experienced by the fly?

We want
d T

d t
=

d

d t
T (x(t), y(t), z(t)) .

so

d T

d t
= ∇T ·

d r
˜
d t

from the chain rule.

=

[
T1

L
ı̂ +

T1

L
̂ +

T1

L
k̂

]
·

[
−b ω sinωt ı̂ + b ω cosωt ̂ + c k̂

]

⇒ d T

d t
= −T1

L
bω sinωt+

T1

L
bω cos ωt+

T1

L
c .

Chain Rule For Arbitrary Functions of 2 Variables

Suppose that z = f(x, y), and that

{
x ≡ x(u, v)

y ≡ y(u, v)

So now we have z = f(x(u, v), y(u, v)).

Then using tangent plane arguments (as before) we obtain the chain rule:

If z = f(x(u, v), y(u, v)) ,





∂z

∂u
=

∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u

∂z

∂v
=

∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v
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Note - this rule has to be applied very carefully ! Different partial derivatives hold different variables

constant !

Recall that if y = f(x), then x = f−1(y) and

d y

d x
=

1
d x
d y

.

But this doesn’t work for partial derivatives.

Example: x = r cos θ ; y = r sin θ

Now
∂ x

∂ r
= cos θ [holds θ constant]

But
∂ r

∂ x
6= 1

∂ x
∂ r

!!

because ∂ r
∂ x holds y constant, not θ.

In fact

∂ r

∂ x
=

∂

∂ x

√
x2 + y2

=
x√

x2 + y2

=
r cos θ

r

= cos θ
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Lecture 18

Second Order Partial Derivatives

We can calculate higher derivatives of a function of two (or more) variables.

If z = f(x, y), there are two first order derivatives

∂ f

∂ x
and

∂ f

∂ y
,

and four second order derivatives

∂2 f

∂ x2
=

∂

∂ x

(
∂f

∂ x

)
,

∂2 f

∂ x ∂ y
and

∂2 f

∂ y ∂ x
,

and
∂2 f

∂ y2
=

∂

∂ y

(
∂f

∂ y

)
.

Generally the mixed partial derivatives are equal. In fact, it can be shown that

If the second partial order derivatives of f are continuous at a point

(a, b), then
∂2 f

∂ x ∂ y
=

∂2 f

∂ y ∂ x
at (a, b) .

Note: Strictly speaking we should not say “at a point (a, b)”, but instead say “in some neighbourhood

of (a, b)”. i.e. a disk of radius ǫ about (a, b).
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Example: Show that the function

U(x, y) = A sin kx sinh ky

is a solution to the partial differential equation

∂2 U

∂ x2
+
∂2 U

∂ y2
= 0 (Laplace’s equation) .

∂ U

∂ x
= A k cos kx sinh ky

∂2 U

∂ x2
= −A k2 sin kx sinh ky

∂ U

∂ y
= A k sin kx cosh ky

∂2 U

∂ y2
= A k2 sin kx sinh ky

So

∂2 U

∂ x2
+
∂2 U

∂ y2
= −A k2 sin kx sinh ky + A k2 sin kx sinh ky

= 0 as required.

We need 2nd order (and higher) partial derivatives in optimisation, and also for expressing functions

in terms of their Taylor series expansions.

Let’s begin by reviewing Taylor series in 1 variable:

Review 1D Taylor Series

In one variable, y = f(x), a Taylor series is a representation of f(x) as a power series:

f(x) = c0 + c1 (x− x0) + c2 (x− x0)
2 + c3 (x− x0)

3 + . . .

=
∞∑

j=0

cj (x− x0)
j .

This is a Taylor series centred at the point x = x0.

How do we calculate the coefficients (constants) c0, c1, c2, · · · ?

We put x = x0, so f(x0) = c0.

Then c0 = f(x0) .
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Next we take the first derivative: f ′(x) = c1 + 2c2 (x− x0) + 3c3 (x− x0)
2 + . . . and put x = x0 to

give

c1 = f ′(x0) .

Differentiating again gives f ′′(x) = 2c2 + 6c3 (x− x0) + . . . , and putting x = x0 results in

c2 = f ′′(x0) .

Continuing on in this manner, we get the general coefficient as

cj =
1

j!
f (j)(x0)

where for convenience we have defined 0! = 1 and 1! = 1.

So our Taylor series about x = x0 becomes

f(x) =
∞∑

j=0

1

j!
f (j)(x0) (x− x0)

j .

If the series is centred about x0 = 0, the series is called a MacLaurin series

f(x) =
∞∑

j=0

1

j!
f (j)(0) xj .
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Example: Find the MacLaurin series for f(x) = ex.

f(x) = ex ; f(0) = 1

f ′(x) = ex ; f ′(0) = 1

f ′′(x) = ex ; f ′′(0) = 1

· · · · · · · · ·
f (j)(x) = ex ; f (j)(0) = 1

So the MacLaurin series is

f(x) =
∞∑

j=0

xj

j!
= ex

and

ex = 1 + x+
x2

2!
+
x3

3!
+ . . .

Note: You should know the MacLaurin series for ex, and the geometric series 1
1−x =

1 + x+ x2 + x3 + . . . =
∑∞

j=0 x
j .
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Lecture 19

Taylor Series for Functions of Two

Variables

Suppose we have z = f(x, y).

We have to expand this as a double Taylor series about the point (x, y) = (a, b). How do we do it?

We can expand one variable at a time.

First fix y:

f(x, y) =
∞∑

j=0

1

j!

∂(j) f(a, y)

∂ x(j)
(x− a)j

Temporarily consider the function

Gj(y) =
∂(j) f(a, y)

∂ x(j)

Gj is a function of one variable y.It can be expanded as a Taylor series as well !

Gj(y) =
∞∑

k=0

1

k!

∂(k)Gj(b)

∂ y(k)
(y − b)k .

So now the original function becomes

f(x, y) =
∞∑

j=0

1

j!

[
∞∑

k=0

1

k!

∂(k)Gj(b)

∂ y(k)
(y − b)k

]
(x− a)j

f(x, y) =
∞∑

j=0

∞∑

k=0

1

j!

1

k!

∂(j+k) f(a, b)

∂ x(j) ∂ y(k)
(x− a)j (y − b)k .
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Approximating Polynomials

Zeroth Order

If we keep only the j = 0, k = 0 term, we get

f(x, y) ≈ f(a, b)

First Order

If we keep the j = 0, k = 0; j = 0, k = 1; j = 1, k = 0 terms (maximum total order = 1), we get

f(x, y) ≈ f(a, b) + fx(a, b) (x− a) + fy(a, b) (y − b) .

This is the tangent plane !

Second Order

We want to keep the total order ≤ 2; i.e. the first order approximation plus terms j = 2, k = 0; j =

0, k = 2; j = 1, k = 1. Thus we get

f(x, y) ≈ f(a, b) + fx(a, b) (x− a) + fy(a, b) (y − b)

+
1

2
fxx(a, b) (x− a)2 + fxy(a, b) (x− a) (y − b) +

1

2
fyy(a, b) (y − b)2 .

This can be thought of as a correction to the tangent plane.

Note that the MacLaurin series will have a = 0; b = 0;

f(x, y) =
∞∑

j=0

∞∑

k=0

1

j!

1

k!

∂(j+k) f(0, 0)

∂ x(j) ∂ y(k)
xj yk .
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Example: Find the MacLaurin series for ex+y.

f(0, 0) = 1

fx = ex+y fx(0, 0) = 1

fy = ex+y fy(0, 0) = 1

fxx = ex+y fxx(0, 0) = 1

fxy = ex+y fxy(0, 0) = 1

fyy = ex+y fyy(0, 0) = 1

In fact, it seems clear that all
∂(j+k) f(0, 0)

∂ x(j) ∂ y(k)
= 1 .

So we have

ex+y =
∞∑

j=0

∞∑

k=0

xj

j!

yk

k!
.

Actually, we could have just got this by multiplying together the series for ex and ey:

ex × ey =




∞∑

j=0

xj

j!



(

∞∑

k=0

yk

k!

)

Example: Find the MacLaurin series for ex+y (again).

We can make the substitution z = x + y and then use the MacLaurin series for ez - a

function of 1 variable.

ez = 1 + z +
z2

2!
+
z3

3!
+ . . .

=
∞∑

j=0

zj

j!
.

Now we can replace z with x+ y:

ex+y =
∞∑

j=0

(x+ y)j

j!

and thus must be equivalent to our previous double Taylor series for the same function.
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Example: Find the MacLaurin series for

f(x, y) =
1

(1− x− y)2 .

We begin by rewriting f(x, y) in a recognisable form; e.g. consider the geometric series

1

1− z = 1 + z + z2 + z3 + . . . =
∞∑

j=0

zj .

Then

f(x, y) =
1

(1− (x+ y))2
,

and if we replace x+ y with z and differentiate with respect to z, we get

1

(1− z)2 = 1 + 2z + 3z2 + 4z3 + . . . =

∞∑

j=1

j z(j−1) =

∞∑

j=0

(1 + j)zj .

Now replacing z with x+ y gives

1

(1− x− y)2 =
∞∑

j=0

(1 + j)(x+ y)j .
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Lecture 20

Optimisation

We expect that a big use of partial derivatives will be to find maxima and minima of a function of

two variables

z = f(x, y) .

Consider a point P0 in the x-y plane . Now consider a neighbourhood of P0, which is a disk of radius

ǫ centred at P0.

We can say

• f(x, y) has a local maximum at P0 if, for every point P in the neighbourhood, f(P0) ≥ f(P ).

• f(x, y) has a local minimum at P0 if, for every point P in the neighbourhood, f(P0) ≤ f(P ).
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Suppose f(x, y) has a local maximum at P0, then there is no direction in which f can increase from

P0. So we expect

grad f = ∇f = 0
˜

at P0 .

However, f could also have a local maximum at P0, at a point at which f is not differentiable.

The same situation applies to a local minimum (with f replaced by −f).

We thus define

A critical point P0 of the function f(x, y) is a point at which ∇f is either 0
˜

or else undefined.

Example: Find the critical point for z = f(x, y) = 3 + 2x+ 2y − x2 − y2 .

Look at ∇f =
∂ f

∂ x
ı̂ +

∂ f

∂ y
̂

= (2− 2x) ı̂ + (2− 2y) ̂ .

So ∇f = 0
˜

at the critical point P0(1, 1).

We need some extra information to determine whether P0(1, 1) is a maximum or minimum.

Here we can complete the square:

z = 3− (x2 − 2x+ 1− 1)− (y2 − 2y + 1− 1)

= 5− (x− 1)2 − (y − 1)2

= 5− ((x− 1)2 + (y − 1)2) .

Within its neighbourhood, as we change x and y and move away from P0, z always

decreases. Hence P0(1, 1) must be a local maximum.
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Example: Find the critical point for z = f(x, y) = x2 − y2 .

∇f = 2x ı̂− 2y ̂ ,

so the only critical point is P0(0, 0).

Assessing the behaviour of z within the neighbourhood of P0, we find it is neither a

maximum nor a minimum. It is a saddle point.

Critical Points for General Quadratic

Suppose

z = f(x, y) = a x2 + b x y + c y2 + d .

Critical points exist when ∇f = 0
˜

⇒





∂ f

∂ x
= 2 a x+ b y = 0

∂ f

∂ y
= 2 c y + b x = 0

So the only critical point is (0,0).

But is it a maximum, minimum, or a saddle?

To answer this, we must complete the square:

z = a

[
x2 +

b

a
x y +

c

a
y2

]
+ d

= a

[
x2 +

b

a
x y +

b2

4 a2
y2 − b2

4 a2
y2 +

c

a
y2

]
+ d

= a

[(
x+

b

2 a
y

)2

+

(
4 a c− b2

4 a2

)
y2

]
+ d
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The behaviour of this surface (i.e. the nature of the point (0,0) ) depends on the sign of a and the

sign of 4 a c− b2.

(i) If a > 0 and 4 a c− b2 > 0, the critical point is a local minimum.

(ii) If a < 0 and 4 a c− b2 > 0, the critical point is a local maximum.

(iii) If 4 a c− b2 < 0, the critical point is a saddle.

(iv) If 4 a c− b2 = 0, we don’t have a single critical point but a whole line of them.
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Lecture 21

Second Derivative Test for General

Functions

We looked at the critical points of the quadratic

z = f(x, y) = a x2 + b x y + c y2 + d .

The critical point is when ∇f = 0
˜
, i.e. when (x, y) = (0, 0), and the nature of the critical point

depends on the sign of a and of 4 a c− b2.

How about a general function z = f(x, y) ?

Suppose that there is a critical point at the point (x0, y0). Then ∇f = 0
˜

at that point; i.e.

{
fx(x0, y0) = 0

fy(x0, y0) = 0

Now we know from the theory of Taylor series that any function f(x, y) can be approximated by a

quadratic near (x0, y0).

f(x, y) ≈ f(x0, y0) + fx(x0, y0) (x− x0) + fy(x0, y0) (y − y0)

+
1

2
fxx(x0, y0) (x− x0)

2 + fxy(x0, y0) (x− x0) (y − y0) +
1

2
fyy(x0, y0) (y − y0)

2 .

At the critical point (x0, y0), we have fx = 0 and fy = 0.

If for simplicity we write

{
X = x− x0

Y = y − y0
, then the critical point is at (X,Y ) = (0, 0), and

f(x, y) ≈ f(x0, y0) +
1

2
fxx(x0, y0) X

2 + fxy(x0, y0) X Y +
1

2
fyy(x0, y0) Y

2 .
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This is just the quadratic we had before with

a ≡ 1

2
fxx(x0, y0)

b ≡ fxy(x0, y0)

c ≡ 1

2
fyy(x0, y0)

d ≡ f(x0, y0)

f(x, y) ≈ aX2 + bX Y + c Y 2 + d .

Now if we write D ≡ 4 a c− b2,

D = fxx(x0, y0) fyy(x0, y0)− [fxy(x0, y0)]
2 .

Then just as before, we can classify the nature of the critical point (x0, y0) as follows:

(i) If fxx(x0, y0) > 0 and D > 0, the critical point is a local minimum.

(ii) If fxx(x0, y0) < 0 and D > 0, the critical point is a local maximum.

(iii) If D < 0, the critical point is a saddle.

(iv) If D = 0, we can’t tell, and we need more information.

This method of determining the nature of critical points can only be used when the function can be

approximated by a quadratic Taylor series. Luckily, this is most functions !
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Example: The Simple Pendulum

Kinetic Energy = 1
2 mv2

Potential Energy

= mg × height above bottom

= mg l (1− cos θ)

Total Energy = E(θ, v) = mg l (1− cos θ) +
1

2
mv2

The critical points are when ∇E = 0
˜

⇒

∂ E

∂ θ
= mg l sin θ

∂ E

∂ v
= mv





= 0

⇒ sin θ = 0 ; v = 0, since m, g, and l are constants.

Thus the two critical points are:

(θ, v) = (0, 0)

(θ, v) = (π, 0) .

Now

Eθθ = mg l cos θ

Eθv = 0

Evv = m
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At the critical point (θ, v) = (0, 0) we have

Eθθ = mg l > 0

D = Eθθ Evv − (Eθv)
2 = m2 g l > 0 .

So the total energy E(θ, v) is a minimum here (and the equiibrium point is stable).

At the critical point (θ, v) = (π, 0) we have

Eθθ = −mg l < 0

D = Eθθ Evv − (Eθv)
2 = −m2 g l < 0 .

So this point is a saddle.

Global Maxima and Minima

Calculating critical points, and using the second derivative test, tells us where local maxima, minima,

and saddles are.

But how do we know if a local minimum is the global minumum of the entire function?

In general we don’t ! This is a very difficult problem. If the domain is bounded, there will be a global

minimum somewhere; that could even be on the boundary !
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Lecture 22

Lagrange Multipliers

Let’s now suppose that we have to find the maximum of

z = f(x, y)

subject to a constraint, which is expressed by a functional relationship

g(x, y) = c .

We draw level curves of f(x, y), and the constraint g(x, y) = c.

The solution must must lie on the constraint curve g(x, y) = c. Clearly, the maximum value of f

will occur at point P , where the level curve of f is tangent to the constraint curve.

If the two curves are tangent at point P , then the normal vectors to each curve are parallel.

i.e. ∇f is parallel to ∇g

at a point where g(x, y) = c.
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We can write this as

∇f = λ∇g at g = c ,

⇒

∂ f

∂ x
− λ

∂ g

∂ x

∂ f

∂ y
− λ

∂ g

∂ y

(g − c)





= 0 .

The proportionality factor λ is called a Lagrange multiplier.

We can formalise this as follows: Define a new function of three variables

H(x, y, λ) = f(x, y)− λ [g(x, y)− c]

Lagrangian Function

We can find maximum (or minimum) of f , subject to the constraint g = c, by finding the critical points

of H; i.e.

∇H = 0
˜
.

Example: Find the minimum of

f(x, y) = x2 + y2

subject to the constraint x+ y = 3.

With no constraint (unconstrained optimisation), the minimum can be obtained by finding

where ∇f = 0
˜
. This occurs at (x, y) = (0, 0).

With the constraint imposed (constrained optimisation), we can approach this in two ways.

Method 1. We don’t need Lagrange multipliers (or even calculus) to solve this simple

problem!

We could eliminate y by rearranging the constraint, and then substitute it into f :
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y = 3− x

Then f = x2 + (3− x)2

= x2 + 9− 6x+ x2

= 2
(
x2 − 3x+ 9

4 − 9
4

)
+ 9

= 2
(
x− 3

2

)2
+ 9

2 .

Clearly, the minimum occurs at x = 3
2 ⇒ y = 3

2 .

Method 2. Now using Lagrange multipliers.

We begin by forming the Lagrangian function:

H(x, y, λ) = (x2 + y2)− λ [(x+ y)− 3] .

Then we want

∂ H

∂ x
= 2x− λ

∂ H

∂ y
= 2y − λ

∂ H

∂ λ
= −(x+ y − 3)





= 0 .

Solving for x, y and λ gives:

x =
λ

2
; y =

λ

2
;

λ

2
+
λ

2
− 3 = 0 .

So λ = 3, and following on, x =
3

2
and y =

3

2
.

The minimum is therefore (x, y) =

(
3

2
,
3

2

)
.

Note: The 2nd derivative test is not so easy for functions of three variables H(x, y, λ).
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We can use Lagrange multipliers in exactly the same way for functions of 3 variables.

Example: Maximise the function

f(x, y, z) = x+ 2y + 3z

subject to the constraint z = 5− x2 − y2.

Note: For the unconstrained optimisation problem, there would be no maximum. Why?

We begin by forming the Lagrangian function:

H(x, y, z, λ) = (x+ 2y + 3z)− λ
[
(x2 + y2 + z)− 5

]
.

Then we want

∂ H

∂ x
= 1− 2λx = 0 (22.1)

∂ H

∂ y
= 2− 2λ y = 0 (22.2)

∂ H

∂ z
= 3− λ = 0 (22.3)

∂ H

∂ λ
= −(x2 + y2 + z − 5) = 0 (22.4)

From equation (22.3), λ = 3. Substituting λ = 3 into equations (22.1) and (22.2)

respectively, gives

x =
1

6
; y =

1

3
.

Then

z = 5− x2 − y2

= 5−
(

1

6

)2

−
(

1

3

)2

=
180− 1− 4

36

=
175

36
.

So the maximum is at (x, y, z) =

(
1

6
,

1

3
,

175

36

)
.
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Lecture 23

Integrating a Function of Two

Variables

To begin, recall that integration of a function of 1 variable, y = f(x), is
∫ b

a
f(x) d x .

In the Riemann approach we think of the definite integral as the area under the curve y = f(x).

We can approximate this area by splitting it up into N rectangles, and summing the area of each

rectangle. Now the ith rectangle has width ∆xi and some characteristic height hi = f(xi), where xi

is a point inside the ith rectangle. The area of the ith rectangle is then

Areai = hi ∆xi = f(xi) ∆xi .

The total area under the curve is

Area ≈
N∑

i=1

Areai

=
N∑

i=1

f(xi) ∆xi .
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The approximation becomes exact as N → ∞ and all ∆xi → 0. In the limit then, we can define the

definite integral as

∫ b

a
f(x) d x = lim

N→∞

N∑

i=1

f(xi) ∆xi .

In the case when f(x) ≡ 1, we just get the length of the interval b− a.

Now consider the Riemann approach to evaluate
∫ ∫

R
f(x, y) dA

where R is some region in the x-y plane .

Imagine chopping up the region R into N little sub-areas ∆A1, ∆A2, . . . , ∆AN .

Suppose the ith little area is ∆Ai, and the “height” of the function z = f(x, y) in that sub-area is

approximated by zi = f(xi, yi) where (xi, yi) is a point inside ∆Ai.

The volume between the surface z = f(x, y) and the x-y plane is approximately

N∑

i=1

f(xi, yi) ∆Ai .

This becomes exact as N →∞ and ∆Ai → 0, in which case we define the definite integral as

∫ ∫

R
f(x, y) dA = lim

N→∞

N∑

i=1

f(xi, yi) ∆Ai .
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This gives the volume between the x-y plane and the surface.

If f(x, y) ≡ 1, we get the area of the region R:

Area =

∫ ∫

R
dA .

How do we evaluate the integral of a function of two variables?

If the region R is a rectangle, we can think of the integral as being a double integral.

∫ ∫

R
f(x, y) dA =

∫ b

a

∫ d

c
f(x, y) d y d x

=

∫ d

c

∫ b

a
f(x, y) d x d y

The order of integration won’t matter, so long as R is a rectangle having its sides parallel to the axes.
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Example:

Solve

∫ ∫

R1

cosx cos y dA and

∫ ∫

R2

cosx cos y dA

where R1 is the rectangle 0 ≤ x ≤ π/2; 0 ≤ y ≤ π/2, and R2 is the rectangle

π/4 ≤ x ≤ 3π/4; π/2 ≤ y ≤ π.

∫ ∫

R1

cosx cos y dA =

∫ π/2

0

∫ π/2

0
cosx cos y d y d x

=

∫ π/2

0
cosx

(∫ π/2

0
cos y dy

)
dx

=

(∫ π/2

0
cosx dx

)(∫ π/2

0
cos y dy

)

= (1) (1)

= 1
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∫ ∫

R2

cosx cos y dA =

∫ 3π/4

π/4

∫ π

π/2
cosx cos y dy dx

=

∫ 3π/4

π/4
cosx

(∫ π

π/2
cos y dy

)
dx

=

(∫ 3π/4

π/4
cosx dx

)(∫ π

π/2
cos y dy

)

= (0) (−1)

= 0

Example:

Solve

∫ ∫

R1

dA and

∫ ∫

R2

dA

where R1 is the rectangle 0 ≤ x ≤ π/2; 0 ≤ y ≤ π/2, and R2 is the rectangle

π/4 ≤ x ≤ 3π/4; π/2 ≤ y ≤ π.
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∫ ∫

R1

dA =

∫ π/2

0

∫ π/2

0
d y d x

=

∫ π/2

0

(∫ π/2

0
dy

)
dx

=

(∫ π/2

0
dx

)(∫ π/2

0
dy

)

=
(π

2

) (π
2

)

=
π2

4

∫ ∫

R2

dA =

∫ 3π/4

π/4

∫ π

π/2
dy dx

=

∫ 3π/4

π/4

(∫ π

π/2
dy

)
dx

=

(∫ 3π/4

π/4
dx

)(∫ π

π/2
dy

)

=
(π

2

) (π
2

)

=
π2

4
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Lecture 24

Double Integrals

Example: Find the volume of a rectangular building with a sloping roof.

V olume =

∫ ∫

R
(H +mx+ n y) dA

Do the x-integral first:

V olume =

∫ B

0

∫ L

0
(H +mx+ n y) dx dy

=

∫ B

0

{[
H x+

1

2
mx2 + n y x

]x=L

x=0

}
dy

=

∫ B

0

{
H L+

1

2
mL2 + n y L

}
dy

=

[
H Ly +

1

2
mL2 y +

1

2
n y2 L

]y=B

y=0

= H LB +
1

2
mL2B +

1

2
nB2 L
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Do the y-integral first:

V olume =

∫ L

0

∫ B

0
(H +mx+ n y) dy dx

=

∫ L

0

{[
H y +mxy +

1

2
n y2

]y=B

y=0

}
dx

=

∫ L

0

{
H B +mxB +

1

2
nB2

}
dx

=

[
H B x+

1

2
mx2B +

1

2
nB2 x

]x=L

x=0

= H BL+
1

2
mL2B +

1

2
nB2 L

As expected, the two results are the same. Importantly, since the region of integration R

is rectangular, the order of integration does not matter.

If the region R is NOT rectangular

When the region R is a rectangle, all of the integration limits are constants. When R is not a rectangle,

the limits on the inner integral will not be constants. They will be functions of the other variable.

Now the order of integration is extremely important !! However, it has no bearing on the final answer,

but may determine how difficult the integration process is.

Example: For a region R bounded by y = x and y = x2, calculate the integral

∫ ∫

R
(1 + x y) dA

Do the x-integral first:

We take strips across the region R, of width dy, and parallel to the x-axis.
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∫ ∫

R
(1 + x y) dA =

∫ y=1

y=0

∫ x=
√

y

x=y
(1 + x y) dx dy

=

∫ y=1

y=0
dy

∫ x=
√

y

x=y
dx (1 + x y)

=

∫ y=1

y=0
dy

[
x+

1

2
x2 y

]x=
√

y

x=y

=

∫ y=1

y=0
dy

[√
y − y +

1

2
y2 − 1

2
y3

]

=

[
2

3
y3/2 − 1

2
y2 +

1

6
y3 − 1

8
y4

]y=1

y=0

=
2

3
− 1

2
+

1

6
− 1

8

=
5

24

Do the y-integral first:

We take strips across the region R, of width dx, and parallel to the y-axis.

∫ ∫

R
(1 + x y) dA =

∫ x=1

x=0

∫ y=x

y=x2

(1 + x y) dy dx

=

∫ x=1

x=0
dx

∫ y=x

y=x2

dy (1 + x y)

=

∫ x=1

x=0
dx

[
y +

1

2
x y2

]y=x

y=x2
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=

∫ x=1

x=0
dx

[
x− x2 +

1

2
x3 − 1

2
x5

]

=

[
1

2
x2 − 1

3
x3 +

1

8
x4 − 1

12
x6

]x=1

x=0

=
1

2
− 1

3
+

1

8
− 1

12

=
5

24

As expected, the two results are the same (as they must be). Importantly, since the

region of integration is not rectangular, the order of integration does matter and particular

attention must be paid to the limits.

Example: Calculate the integral

∫ ∫

R
cos(x2) dA

where R is bounded by the x-axis, x = 1, and y = 2x.

Do the x-integral first:

We take strips across the region R, of width dy, and parallel to the x-axis. Then

∫ ∫

R
cos(x2) dA =

∫ y=1

y=0
dy

∫ x=1

x=y/2
dx cos(x2)

Unfortunately we cannot compute the x-integral. It is known as a Fresnel integral and

must be computed numerically. (Fresnel integrals typically occur in diffraction theory)
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Do the y-integral first:

We take strips across the region R, of width dx, and parallel to the y-axis. Then

∫ ∫

R
cos(x2) dA =

∫ x=1

x=0

∫ y=2x

y=0
cos(x2) dy dx

=

∫ x=1

x=0
dx

∫ y=2x

y=0
dy cos(x2)

=

∫ x=1

x=0
dx

[
y cos(x2)

]y=2x

y=0

=

∫ x=1

x=0
dx

[
2x cos(x2)

]

=
[
sin(x2)

]x=1

x=0

= sin(1)− sin(0)

= sin(1)

= 0.84 (Remember: radians !!!!)
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Lecture 25

Triple Integrals

As before, we will use a Riemann approach to evaluate the integral

∫ ∫ ∫

W
f(x, y, z) dV

where W is some volume in xyz space.

Imagine chopping up the volume W into N little sub-volumes ∆V1, ∆V2, . . . , ∆VN .

Suppose the ith little volume element is ∆Vi, and (xi, yi, zi) is a point inside ∆Vi.

The Riemann sum is then
N∑

i=1

f(xi, yi, zi) ∆Vi .

This becomes exact as N →∞ and ∆Vi → 0, in which case we define the definite integral as

∫ ∫ ∫

W
f(x, y, z) dV = lim

N→∞

N∑

i=1

f(xi, yi, zi) ∆Vi .
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Note that if f(x, y, z) ≡ 1, we get the volume of the region W :

V olume =

∫ ∫ ∫

W
dV .

How do we evaluate a triple integral?

As before, we have two cases:

1. when W is a rectangular prism;

2. when W is not a rectangular prism.

If the region W is rectangular

∫ ∫ ∫

W
f(x, y, z) dV =

∫ q

p

∫ d

c

∫ b

a
f(x, y, z) dx dy dz

=

∫ b

a

∫ q

p

∫ d

c
f(x, y, z) dy dz dx

= . . .

In this case, the functions describing the rectangular faces are constants; i.e. the rectangular faces are

parallel to the axis planes. We then have a triple (iterated) integral, and the integrations can be done

in any order.
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Example: Find the total mass of a rectangular fruit cake bounded by 0 ≤ x ≤ 1; 0 ≤
y ≤ 1; and 0 ≤ z ≤ 1, and having density

ρ(x, y, z) = x y e−z .

Mass =

∫ 1

0

∫ 1

0

∫ 1

0
ρ(x, y, z) dz dy dx

=

∫ 1

0

∫ 1

0

∫ 1

0
x y e−z dz dy dx

=

∫ 1

0

∫ 1

0
x y

[
−e−z

]z=1

z=0
dy dx

=

∫ 1

0

∫ 1

0
x y

[
1− e−1

]
dy dx

=
(
1− e−1

) ∫ 1

0
x

[
1

2
y2

]y=1

y=0

dx

=
1

2

(
1− e−1

) ∫ 1

0
x dx

=
1

2

(
1− e−1

) [1

2
x2

]x=1

x=0

=
1

4

(
1− 1

e

)

If the region W is NOT rectangular

When W is not rectanglular, the limits on the inner integrals will not be constants. They will be

functions of the other variables. As each of the nested integrations are performed, one less independent

variable appears in the limit functions, and the independent variable being integrated must not appear

in its limit function. For example, if the order of integration is z then y then x, then the limit functions

on the z integral must only contain x, y, and constants; the limit functions on the y integral must

only contain x and constants; and the limit on the x integral must only be constants.

The order of integration is extremely important !! However, it has no bearing on the final answer, but

may determine how difficult the integration process is.
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Example: Find the volume of a sphere of radius b

∫ ∫ ∫

sphere
dV =

∫ ∫ ∫

sphere
dz dy dx

We begin by taking a slice, e.g. parallel to the y-z plane . Then

−b ≤ x ≤ b

−
√
b2 − x2 ≤ y ≤

√
b2 − x2

−
√
b2 − x2 − y2 ≤ z ≤

√
b2 − x2 − y2

V olume =

∫ b

−b
dx

∫ √
b2−x2

−
√

b2−x2

dy

∫ √b2−x2−y2

−
√

b2−x2−y2

dz

=

∫ b

−b
dx

∫ √
b2−x2

−
√

b2−x2

dy 2
√
b2 − x2 − y2
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To evaluate the y integral, it is best to put it into the form

∫ k

−k
2
√
k2 − y2 dy

and make the substitution y = k sin θ. Then

∫ k

−k
2
√
k2 − y2 dy =

∫ π/2

−π/2
2k2 cos2 θ d θ =

∫ π/2

−π/2
k2(1 + cos 2 θ) d θ = π k2 .

V olume =

∫ b

−b
dx π(b2 − x2)

= π

[
b2 x− 1

3
x3

]b

−b

= π

(
2b3 − 2

3
b3
)

=
4

3
π b3 as expected.

We could have made life alot easier for ourselves by computing the volume integral in

spherical coordinates . Then

∫ ∫ ∫

sphere
dV =

∫ ∫ ∫

sphere
r2 sin θ dr dθ dφ

=

∫ 2π

0
dφ

∫ π

0
sin θ dθ

∫ b

0
r2 dr

=
4

3
π b3 .

Again, this is an example of choosing an appropriate coordinate system for the problem at

hand. In this example the effect has been to remove functions from the limits and replace

them with constants - a good thing !!
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Lecture 26

Vector Fields

In continuum mechanics, we often distinguish between scalar fields and vector fields.

A scalar field is the behaviour of a scalar, as a function of position x, y, z. An example is the temper-

ature in a room, T (x, y, z).

To understand a scalar field, we might look at level surfaces T (x, y, z) = c, or maybe level curves

T (x, y; z) = c for different heights z.

A vector field is some vector F
˜

that is some function of position x, y, z. We might write F
˜

(x, y, z) or

even F
˜

(r
˜
).

Vector F
˜

has 3 components so the vector field F
˜

(r
˜
) is actually

F
˜

(r
˜
) = F1(x, y, z) ı̂ + F2(x, y, z) ̂ + F3(x, y, z) k̂ ,

where each component of the vector field is a scalar field.

How do we draw vector fields? In general it’s very difficult. The simplest thing to do is to draw little

arrows, the direction and length of which represent the vector at various points x, y, z.

Examples of vector fields are:

• Force fields F
˜

(r
˜
);

• Velocity vector fields in fluid mechanics v
˜
(r
˜
)
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• Electric or magnetic fields, E
˜

(r
˜
) or H

˜
(r
˜
)

Computer software like Matlab, Mathematica, and Maple have built-in functions that will draw these

fields of little arrows (direction fields, quiver plots, . . . )

Another way of visualising a vector field is to draw the path that a particle would move along, in such

a field.

Example: Suppose the velocity vector v
˜

in a flowing fluid is

v
˜
(x, y) = −y ı̂ + x ̂ .

If r
˜

is the position vector of a particle in the fluid, then

v
˜
(x, y) =

dr
˜
d t

=
d x

d t
ı̂ +

d y

d t
̂ = −y ı̂ + x ̂ ,

and so we have

d x

d t
= −y (26.1)

d y

d t
= x (26.2)

Taking the time derivative of Eq. (26.1) gives

d

d t

(
d x

d t

)
=

d2x

d t2
= −d y

d t
= −x

⇒ d2x

d t2
+ x = 0 . ( An ODE )
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The solution to this equation is

x(t) = A cos t+B sin t .

Using Eq (26.1) again,

y(t) = −d x(t)
d t

= A sin t−B cos t .

Now, since x(t) and y(t) simply represent components of the position vector,

[r(t)]2 = [x(t)]2 + [y(t)]2

= A2 cos2 t+ 2AB cos t sin t+B2 sin2 t

+A2 sin2 t− 2AB cos t sin t+B2 cos2 t

= A2 +B2 .

So the particles move in circles

In fluid mechanics, we can also draw streamlines, which are lines that are everywhere

parallel to v
˜
. Note: these may or may not be the same as the particle paths.
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Gradient Vector Fields

Suppose we have a scalar field T (x, y, z).

Then F
˜

= grad T = ∇T is a vector field.

Vectors F
˜

will always be at right angles to level surfaces of T

Example: Electrostatics: E
˜

= −∇V
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Lecture 27

Line Integrals

Suppose we have a vector field F
˜

(r
˜
).

We want to evaluate the total tangential component of the vector F
˜

, along some curve C.

We approximate the curve C with N straight line segments. Points P and Q are the end-points of

the ith straight line segment, therefore
−−→
PQ = ∆ri

˜
∆ri

˜
is approximately tangent to the curve at point P . So the component of vector F

˜
that is approx-

imately tangent to the curve C at point P is

F
˜

(ri
˜

) · ∆ri

˜
.

The total component of F
˜

tangent to curve C is approximately

N∑

i=1

F
˜

(ri
˜

) · ∆ri

˜

which becomes exact as N →∞.
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We can then define the line integral of F
˜

along curve C to be

∫

C
F
˜

· dr
˜

= lim
N→∞

N∑

i=1

F
˜

(ri
˜

) · ∆ri

˜

How do we evaluate a line integral? The most usual way is parametrise the curve C.

Suppose we have a parameter t, such that the position vector of any point on the curve is

r
˜
(t) , a ≤ t ≤ b .

Then by the chain rule, we have

∫

C
F
˜

· dr
˜

=

∫ b

a
F
˜

(r
˜
(t)) ·

dr
˜
d t

d t

So by parameterising the space curve C, we convert an integral along the space curve into a standard

integral of the form

∫ b

a
. . . dt.

Work

If F
˜

is the force acting on a particle as it moves along the curve C, then the work done by F
˜

on the

particle is

W =

∫

C
F
˜

· dr
˜
.
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Example: A mass m on the end of a string of length l, moves in a horizontal circle

with constant angular speed ω. (such that the angular position φ = ω t)

If we ignore gravity and air resistance, then the only force acting is the tension force τ
˜

on

the string; τ
˜

is directed toward the centre of rotation.

We can find the work done by τ
˜

on the mass m during a complete revolution. We have

work =

∫

circle
τ
˜

· dr
˜

and

τ
˜

= −τ êr

= −τ (cosφ ı̂ + sinφ ̂)

= −τ
(x
l

ı̂ +
y

l
̂

)
.

Now parameterise the circle: r
˜

= l cosωt ı̂ + l sinωt ̂ , 0 ≤ t ≤ 2π
ω ; then

work =

∫ 2π

ω

0
τ
˜

·

dr
˜
d t

d t .

Expanding each of the components in the integral in terms of the parameter t:

τ
˜

= −τ (cosωt ı̂ + sinωt ̂)

and
dr
˜
d t

= −l ω sinωt ı̂ + l ω cosωt ̂ ,
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∴ work =

∫ 2π

ω

0
−τ(−l ω cosωt sinωt+ l ω cosωt sinωt)

= 0 .

Why is the work done = 0 ??

Because τ
˜

and dr
˜

are at right angles. Thus, although τ
˜

is responsible for the circular

motion, it does no work on m.

Example: Consider the previous problem again, but with normal forces and gravity

included.

Again, the work done by the total force F
˜

= τ
˜

+ N
˜
−mgk̂ will be zero.
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Lecture 28

Line Integrals

We have the line integral ∫

C
F
˜

· dr
˜
.

If F
˜

(r
˜
) = F1(x, y, z) ı̂ + F2(x, y, z) ̂ + F3(x, y, z) k̂

then

∫

C
F
˜

· dr
˜

=

∫

C
F1 dx+ F2 dy + F3 dz .

Line Integrals of Gradient Vector Fields

Suppose that we have a vector field F
˜

= grad T = ∇T .

where a
˜

and b
˜

are the position vectors of the starting and finishing points of the curve C. The line

integral then becomes ∫

C
F
˜

· dr
˜

=

∫

C
∇T · dr

˜
,

and if we parametrise the integral
∫

C
F
˜

· dr
˜

=

∫ tb

ta

∇T ·

dr
˜
d t

d t
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=

∫ tb

ta

d T

d t
d t .

We have obtained this simplification through use of the chain rule:

∇T ·

dr
˜
d t

=

(
∂ T

∂ x
ı̂ +

∂ T

∂ y
̂ +

∂ T

∂ z
k̂

)
·

(
d x

d t
ı̂ +

d y

d t
̂ +

d z

d t
k̂

)

=
∂ T

∂ x

d x

d t
+
∂ T

∂ y

d y

d t
+
∂ T

∂ z

d z

d t

=
1

d t

(
∂ T

∂ x
d x+

∂ T

∂ y
d y +

∂ T

∂ z
d z

)

=
1

d t
(d T )

=
d T

d t
.

Now
∫ tb

ta

d T

d t
d t =

∫ tb

ta

d T

= T (tb)− T (ta)

= T (b
˜
)− T (a

˜
) .

Thus, if F
˜

is a gradient field, then the line integral
∫
C F
˜

· dr
˜

only depends on the

end points a
˜

and b
˜
. It is independent of the details of the path C.

Conservative Vector Fields

The vector field F
˜

is conservative if the line integral
∫
C F
˜

· dr
˜

is independent of path - i.e. it only

depends on the end points. Clearly, any gradient vector field F
˜

= ∇T will be conservative.

If F
˜

= ∇T , then T (x, y, z) is called the (scalar) potential for F
˜

.

A conservative force F
˜

is one for which the work done

W =

∫

C
F
˜

· dr
˜

is independent of the path C.

Equivalently for a conservative force F
˜

, if the path C is a closed loop, then the beginning and end

points are the same, and the work W = 0. In this case we write
∮

C
F
˜

· dr
˜

= 0 .

Quite often conservative forces are written as F
˜

= −∇V instead of F
˜

= ∇V . Here V (x, y, z) is the

potential energy of F
˜

.
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Example: Gravity

Gravitational force is F
˜

= −mg k̂ .

This is conservative because we can write F
˜

as the gradient of a scalar function:

F
˜

= −mg k̂ = −∇(mgz + c) .

So the potential energy is

V (x, y, z) = mgz + c .

Example: Is the field

F
˜

= ı̂ + e−mz
̂−mye−mz k̂

conservative? i.e. can we write F
˜

= ∇φ ?

We begin by noting that

∂ φ

∂ x
= F1(x, y, z) = 1 (28.1)

∂ φ

∂ y
= F2(x, y, z) = e−mz (28.2)

∂ φ

∂ z
= F3(x, y, z) = −mye−mz (28.3)

Can we satisfy these three conditions?

If we begin by integrating eqn(28.1) w.r.t. x, holding y and z constant, then

φ(x, y, z) = x+G(y, z) . (28.4)

Differentiating eqn(28.4) and substituting into eqn(28.2) then gives

e−mz =
∂ φ

∂ y
=

∂ (x+G(y, z))

∂ y
=

∂ G

∂ y
. (28.5)
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So
∂ G

∂ y
= e−mz

⇒ G(y, z) = ye−mz +H(z) (28.6)

and eqn(28.4) becomes

φ(x, y, z) = x+ ye−mz +H(z) . (28.7)

Upon substituting eqn(28.7) into eqn(28.3), we get

−mye−mz =
∂ φ

∂ z
=

∂ (x+ ye−mz +H(z))

∂ z
= −mye−mz +H ′(z) ,

giving H ′(z) = 0

⇒ φ(x, y, z) = x+ ye−mz + C .

We can check that F
˜

is indeed conservative by ensuring equations (28.1) – (28.3) are valid.
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Lecture 29

Green’s Theorem in the Plane

We know that the line integral ∫

C
F
˜

· dr
˜

is independent of path if F
˜

= ∇φ (φ is a scalar potential).

Let’s restrict our attention to the 2-D plane (x-y plane ). Then

F = F1 ı̂ + F2 ̂

and F
˜

= ∇φ in 2-D means that





F1 =
∂ φ

∂ x

F2 =
∂ φ

∂ y

In 2-D we can check whether F
˜

is conservative by calculating φ(x, y) if possible.

Alternatively, we can use a simple test on F
˜

itself. If φ is a smooth curve, it must have continuous

2nd order partial derivatives. Then the mixed 2nd order partial derivatives are equal:

∂2 φ

∂ x ∂ y
=

∂2 φ

∂ y ∂ x

⇒ ∂ F2

∂ x
=

∂ F1

∂ y
.

Thus, if F
˜

is a 2-D conservative field,

∂ F2

∂ x
− ∂ F1

∂ y
= 0 .

Note: The quantity
∂ F2

∂ x
− ∂ F1

∂ y
is one component of a three-dimensional vector called curlF

˜
.

Recall that in the derivation above, we have confined ourselves to the x-y plane . A similar situation

exists in the x-z plane and y-z plane .
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Now, consider the line integral about a closed path C. If C is a simple curve in the plane (i.e. it does

not cross itself), then the

the circulation of F
˜

about C is

∮

C
F
˜

· dr
˜
.

In the case that
∂ F2

∂ x
− ∂ F1

∂ y
= 0 , we expect that

∮

C
F
˜

· dr
˜

will be zero, since we expect F
˜

to be

conservative.

So we expect a connection between circulation and
∂ F2

∂ x
− ∂ F1

∂ y
.

Estimate

∮

C
F
˜

· dr
˜

:

∮

C
F
˜

· dr
˜

=

∫ J

I
F
˜

· dr
˜

+

∫ K

J
F
˜

· dr
˜

+

∫ L

K
F
˜

· dr
˜

+

∫ I

L
F
˜

· dr
˜
.

But

∫ J

I
F
˜

· dr
˜

=

∫ a+∆x

a
F1 d x

≈ F1(a, b) ∆x .
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Similarly,

∫ K

J
F
˜

· dr
˜

=

∫ b+∆y

b
F2 d y ≈ F2(a+ ∆x, b) ∆y

∫ L

K
F
˜

· dr
˜

=

∫ a

a+∆x
F1 d x ≈ −F1(a, b+ ∆y) ∆x

∫ I

L
F
˜

· dr
˜

=

∫ b

b+∆y
F2 d y ≈ −F2(a, b) ∆y

⇒
∮

C
F
˜

· dr
˜
≈ [F2(a+ ∆x, b)− F2(a, b)] ∆y − [F1(a, b+ ∆y)− F1(a, b)] ∆x

which, as usual, becomes exact as ∆x and ∆y → 0.

Now with a little rearranging

∮

C
F
˜

· dr
˜

= ∆x ∆y

( [
F2(a+ ∆x, b)− F2(a, b)

∆x

]

−
[
F1(a, b+ ∆y)− F1(a, b)

∆y

] )

= ∆A

(
∂ F2

∂ x
− ∂ F1

∂ y

)
.

So
∂ F2

∂ x
− ∂ F1

∂ y
= lim

∆A→0

1

∆A

∮

C
F
˜

· dr
˜
. in the plane.

From this, we can easily prove a major result of Applied Mathematics:
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Green’s Theorem in the Plane

Suppose curve C is simple and closed, and it encloses a region R that is simply-connected (i.e. no

holes). Then

∮

C
F
˜

· dr
˜

=

∫ ∫

R

(
∂ F2

∂ x
− ∂ F1

∂ y

)
dA.

Proof: We begin by chopping R into N little subareas ∆A1, ∆A2, . . . , ∆AN .

and then look at
N∑

i=1

(
∂ F2

∂ x
− ∂ F1

∂ y

)

i

dAi ≈
N∑

i=1

∮

∆Ci

F
˜

· dr
˜
.

Notice that all internal portions cancel, since the line integrals are traversed in opposite directions.

Then
N∑

i=1

(
∂ F2

∂ x
− ∂ F1

∂ y

)

i

dAi ≈
∑

exterior

∮

∆Ci

F
˜

· dr
˜
.

This becomes exact as N →∞, and the required result follows.
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Lecture 30

Flux Integrals

Here, we are interested in the amount or rate of energy, fluid, . . . , flowing across a surface.

Consider the vector field F
˜

which specifies how the energy or fluid flows. The component of F
˜

in the

direction normal to the surface S is F
˜

· n̂ where n̂ is the outward unit normal to the surface. The dot

product thus gives the amount of F
˜

that crosses the surface.

We define the flux of F
˜

across little surface element ∆Si to be

(F
˜

· n̂)i ∆Si .

Approximating the surface S by N of these little surface elements ∆S1, ∆S2, . . . ,∆SN , the total flux

of F
˜

across S is approximately
N∑

i=1

(F
˜

· n̂)i ∆Si .
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As usual, this becomes exact as N →∞.

The total flux of F
˜

across the surface S is

lim
N→∞

N∑

i=1

(F
˜

· n̂)i ∆Si =

∫ ∫

S
F
˜

· n̂ dS =

∫ ∫

S
F
˜

· dS
˜

Note: This is now a surface integral, defined over some curved surface S in 3D space.

How do we evaluate surface integrals? For a regular surface such as a cylinder, sphere, or rectangular

box it can be relatively straight forward. In general though, we must work with projections.

We begin by projecting S onto its “shadow” surface S∗ on the x-y plane .

Since dot products give us a projection, then little area dx dy becomes

dx dy = dS |n̂ · k̂ | .

So

dS =
dx dy

|n̂ · k̂ |

and

∫ ∫

S
φ dS =

∫ ∫

S∗

φ
dx dy

|n̂ · k̂ |
.
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Now suppose that our surface S has the equation

z = f(x, y)

[ ⇒ G(x, y, z) = z − f(x, y) = 0 ]

and φ(x, y, z) is some function we want to integrate over S. Then

∫ ∫

S
φ(x, y, z) dS =

∫ ∫

S∗

φ(x, y, f(x, y))
dx dy

|n̂ · k̂ |
.

The unit normal is given by

n̂ = ± ∇G(x, y, z)

‖∇G(x, y, z)‖

= ± ∇ (z − f(x, y))

‖∇ (z − f(x, y))‖

= ± −fx ı̂− fy ̂ + k̂√
1 + f2

x + f2
y

So n̂ · k̂ = ± 1√
1 + f2

x + f2
y

.

and we have

∫ ∫

S
φ(x, y, z) dS =

∫ ∫

S∗

φ(x, y, f(x, y))
√

1 + f2
x + f2

y dx dy

a potentially nasty double integral !!!

Example:

Calculate the flux

∫ ∫

S
F
˜

· dS
˜
.
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• S is the surface z = f(x, y) = y2

• S∗ is 0 ≤ x ≤ 1; 0 ≤ y ≤ 1

• F
˜

= x2
ı̂ + y2

̂ + z2 k̂

• n̂ is the upwardly directed unit normal

n̂ = +
∇ (z − f(x, y))

‖∇ (z − f(x, y))‖

= +
∇ (z − y2)

‖∇ (z − y2)‖

= +
−2 y ̂ + k̂√

1 + 4 y2

∫ ∫

S
F
˜

· n̂ dS =

∫ ∫

S∗

F
˜

· n̂
dx dy

|n̂ · k̂ |
,

and F
˜

· n̂ =
−2 y3 + z2

√
1 + 4 y2

⇒ F
˜

· n̂
∣∣
on S

=
−2 y3 + y4

√
1 + 4 y2

∴

∫ ∫

S
F
˜

· n̂ dS =

∫ 1

0

∫ 1

0

−2 y3 + y4

√
1 + 4 y2

√
1 + 4 y2 dx dy

=

∫ 1

0
(−2 y3 + y4) [x]10 dy

=

[
− y

4

2
+
y5

5

]1

0

=
−3

10
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Lecture 31

The Jacobian

Change of Variables

Throughout this course we implicitly did change of variable problems when we converted cartesian

integrations into spherical or cylindrical integrations to suit the geometry of the problem. Suppose

we wanted to make a general change of variables though; suppose we weren’t necessarily interested

in changing to another set of orthogonal coordinates but just making variable substitutions to make

our integrations simpler. What we need is a general change of variables technique: i.e. the Jacobian

matrix technique. Of course, since it is a general method, the Jacobian matrix method will work for

all cartesian ⇔ spherical ⇔ cylindrical cases as well.

In Two Dimensions

Suppose that in two dimensions we wish to make a change of variables from cartesian to some general

system in u and v:

x = x(u, v) , and y = y(u, v) ,

thus making u and v our new variables of integration. Now if either u or v is held constant, these

equations describe a contour curve in the x-y plane . The contours associated with every constant

value of u and v thus form the grid lines of a new coordinate system. Consider then the grid lines

formed by u, u+ ∆u, v, and v+ ∆v, and the points P, Q, R, and S that constitute the intersection

points of the grid lines. Then from cross product theory, we know that the area enclosed by the

parallelogram PQRS is

dA = ||
→
PQ ×

→
PR ||.
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However,
→
PQ = r

˜
(u+ ∆u, v)− r

˜
(u, v) =

r
˜
(u+ ∆u, v)− r

˜
(u, v)

∆u
∆u =

∂r
˜
∂u

du ;

and likewise

→
PR = r

˜
(u, v + ∆v)− r

˜
(u, v) =

r
˜
(u, v + ∆v)− r

˜
(u, v)

∆v
∆v =

∂r
˜
∂v

dv .

Therefore the area element dA can be rewritten

dA =

∣∣∣∣
∣∣∣∣
∂r
˜
∂u
×
∂r
˜
∂v

∣∣∣∣
∣∣∣∣ du dv ,

=

∣∣∣∣
∣∣∣∣
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

∣∣∣∣
∣∣∣∣ du dv ,

=

∣∣∣∣
∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣
∣∣∣∣ du dv .

The magnitude of the vector product, known as the Jacobian, can also be written in determinant

form. The second order Jacobian (with the magnitude symbols omitted for brevity) is written

J

(
x, y

u, v

)
=

∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣

The effect of a change of variables can be seen by plotting the region of integration both in xy space

and then in uv space. Since u, u+∆u, v, and v+∆v are constants, the transfer of variables turns the

arbitrarily shaped region in xy space, into a rectangular region in uv space. The integration should

then be alot simpler.

The transformation of a general double integral is then

∫ ∫

R
f(x, y) dx dy =

∫ ∫

R
F (u, v)

∣∣∣∣J
(
x, y

u, v

)∣∣∣∣ du dv

where F (u, v) = f(x(u, v), y(u, v)), and
∣∣∣J
(

x,y
u,v

)∣∣∣ indicates the absolute value of the Jacobian.
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In Three Dimensions

In moving to three dimensions, the Jacobian approach is a natural extension to the two dimensional

approach. Suppose that in three dimensions we wish to make a change of variables from cartesian

coordinates to some general system in u, v and w:

x = x(u, v, w) , y = y(u, v, w) , and z = z(u, v, w) ,

thus making u, v, and w our new variables of integration. Since the volume of a parallelepiped of sides

a
˜
, b
˜
, and c

˜
is a
˜

· (b
˜
× c
˜
), the infinitesimal volume element in our new coordinate system is given by

dV =

∣∣∣∣
∣∣∣∣
∂r
˜
∂u

·

(
∂r
˜
∂v
×
∂r
˜

∂w

)∣∣∣∣
∣∣∣∣ du dv dw ,

=

∣∣∣∣
∣∣∣∣
∂(x, y, z)

∂(u, v, w)

∣∣∣∣
∣∣∣∣ du dv dw .

Now, with the third order Jacobian given by

J

(
x, y, z

u, v, w

)
=

∂(x, y, z)

∂(u, v, w)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂x

∂w

∂y

∂u

∂y

∂v

∂y

∂w

∂z

∂u

∂z

∂v

∂z

∂w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The transformation of a general triple integral becomes

∫ ∫ ∫

V
f(x, y, z) dx dy dz =

∫ ∫ ∫

V
F (u, v, w)

∣∣∣∣J
(
x, y, z

u, v, w

)∣∣∣∣ du dv dw

where F (u, v, w) = f(x(u, v, w), y(u, v, w), z(u, v, w)) and
∣∣∣J
(

x,y,z
u,v,w

)∣∣∣ indicates the absolute value of

the Jacobian.

A useful property of the Jacobian is that

J

(
x, y, z

u, v, w

)
=

[
J

(
u, v, w

x, y, z

)]−1

.
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Example: Evaluate the integral

∫ ∫

R
xy dx dy

where the region R is bounded by y = x2 + 4, y = x2, y = 6− x2 and y = 12− x2.

We begin by rewriting the boundary functions as y − x2 = 4, y − x2 = 0, y + x2 = 6 and

y + x2 = 12. It is then easy to see that an appropriate change of variables might be

u = y + x2 and v = y − x2

With this change of variables, the integration region now becomes 6 ≤ u ≤ 12 and 0 ≤
v ≤ 4.

The Jacobian is

J

(
x, y

u, v

)
=

[
J

(
u, v

x, y

)]−1

=




∣∣∣∣∣∣∣∣∣∣

∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

∣∣∣∣∣∣∣∣∣∣




−1

=
1

4x

and the integral becomes

∫ ∫

R′

xy
1

4x
du dv =

1

4

∫ ∫

R′

y du dv =
1

4

∫ 4

0

∫ 12

6

u+ v

2
du dv = 33 .

You can confirm this by doing the integral directly, without the change of variables.
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Example: Suppose we are after all the surface and volume elements involved in a change

of variables from cartesian to spherical coordinates . Then with (u, v, w) = (R, θ, φ)

x = x(R, θ, φ) = R sin θ cosφ

y = y(R, θ, φ) = R sin θ cosφ

z = z(R, θ, φ) = R cos θ .

The surfaces of a little spherical volume element are given by

dSR =
∣∣∣
∣∣∣
〈

∂(x,y)
∂(θ,φ) ,

∂(x,z)
∂(θ,φ) ,

∂(y,z)
∂(θ,φ)

〉∣∣∣
∣∣∣ dθ dφ = R2 sin θ dθ dφ

dSθ =
∣∣∣
∣∣∣
〈

∂(x,y)
∂(R,φ) ,

∂(x,z)
∂(R,φ) ,

∂(y,z)
∂(R,φ)

〉∣∣∣
∣∣∣ dR dφ = R sin θ dR dφ

dSφ =
∣∣∣
∣∣∣
〈

∂(x,y)
∂(R,θ) ,

∂(x,z)
∂(R,θ) ,

∂(y,z)
∂(R,θ)

〉∣∣∣
∣∣∣ dR dθ = R dR dθ

and the volume element itself is given by

dV =

∣∣∣∣
∣∣∣∣
∂(x, y, z)

∂(R, θ, φ)

∣∣∣∣
∣∣∣∣ dR dθ dφ = R2 sin θ dR dθ dφ .
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Example: Suppose we are after all the surface and volume elements involved in a change

of variables from cartesian to cylindrical coordinates . Then with (u, v, w) = (r, φ, z)

x = x(r, φ, z) = r cosφ

y = y(r, φ, z) = r sinφ

z = z(r, φ, z) = z .

The surfaces of a little cylindrical volume element are given by

dSr =
∣∣∣
∣∣∣
〈

∂(x,y)
∂(φ,z) ,

∂(x,z)
∂(φ,z) ,

∂(y,z)
∂(φ,z)

〉∣∣∣
∣∣∣ dθ dφ = r dφ dz

dSφ =
∣∣∣
∣∣∣
〈

∂(x,y)
∂(r,z) ,

∂(x,z)
∂(r,z) ,

∂(y,z)
∂(r,z)

〉∣∣∣
∣∣∣ dr dz = dr dz

dSz =
∣∣∣
∣∣∣
〈

∂(x,y)
∂(r,φ) ,

∂(x,z)
∂(r,φ) ,

∂(y,z)
∂(r,φ)

〉∣∣∣
∣∣∣ dr dφ = r dr dφ

and the volume element itself is given by

dV =

∣∣∣∣
∣∣∣∣
∂(x, y, z)

∂(r, φ, z)

∣∣∣∣
∣∣∣∣ dr dφ dz = r dr dφ dz .

133



Lecture 32

Divergence of a Vector Field

Consider a small volume V . It has a closed surface S.

We want to consider the flux of the vector field F
˜

across the closed surface S.

Geometric Definition of Divergence

flux = Φ = ©
∫∫

S
F
˜

· n̂ dS = ©
∫∫

S
F
˜

· dS
˜

Physically, we would expect the overall flux of F
˜

through S to be zero unless F
˜

can be “stored” or

“created” within volume V .

©
∫∫

S
F
˜

· n̂ dS is a measure of how “compressible” the vector field F
˜

is, when averaged over the volume

V . To get a property of F
˜

that is independent of volume V , we must allow the volume to tend to

zero: i.e. V → 0. In doing so we then have the divergence of F
˜

.

divF
˜

= lim
V →0

{
1

V
©
∫∫

S
F
˜

· n̂ dS

}

134



Note: divF
˜

is a scalar. It measures how much vector field F
˜

can be expanded or compressed.

Definition of Divergence in Cartesian Coordinates

Let V be a small rectangular volume.

We need to estimate the flux ◦
∫∫

S F
˜

· n̂ dS by summing over the six faces of the rectangle. Each face

has a unit normal vector that points out of the volume V . Let F
˜

= F1 ı̂ + F2 ̂ + F3 k̂ .

Consider the pair of faces parallel to the y-z plane :

Their contribution to the flux is

©
∫∫

x=a
F
˜

· (−ı̂) dy dz + ©
∫∫

x=a+∆x
F
˜

· (ı̂) dy dz

≈ −F1(a, b, c)∆y∆z + F1(a+ ∆x, b, c)∆y∆z

(which becomes exact as ∆y,∆z → 0

= ∆x∆y∆z

[
F1(a+ ∆x, b, c)− F1(a, b, c)

∆x

]

≈ V
∂F1

∂x
.
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Similarly the pair of faces parallel to the x-z plane will contribute

≈ V
∂F2

∂y
;

and the pair of faces parallel to the x-y plane will contribute

≈ V
∂F3

∂z
.

So ©
∫∫

S
F
˜

· n̂ dS ≈ V

[
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

]

(becoming exact as V → 0).

So, from the definition we get

divF
˜

=
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

which can also be written as the result of a dot product between the del operator and the vector field

F
˜

:

divF
˜

=

(
∂

∂x
ı̂ +

∂

∂y
̂ +

∂

∂z
k̂

)
·

(
F1 ı̂ + F2 ̂ + F3 k̂

)

⇒ divF
˜

= ∇ · F
˜

A vector field F
˜

is said to be incompressible, divergence free, or solenoidal if ∇ · F
˜

= 0 everywhere.
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Example: Suppose F
˜

= k
(
x ı̂ + y ̂ + z k̂

)
.

Then divF
˜

= k

(
∂(x)

∂x
+
∂(y)

∂y
+
∂(z)

∂z

)

= k(1 + 1 + 1)

= 3 k
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The Laplace Operator

If F
˜

is a gradient vector field then F
˜

= ∇φ. Then

div (grad φ) = ∇ · (∇φ) = div

(
∂φ

∂x
ı̂ +

∂φ

∂y
̂ +

∂φ

∂z
k̂

)

=

(
∂

∂x
ı̂ +

∂

∂y
̂ +

∂

∂z
k̂

)
·

(
∂φ

∂x
ı̂ +

∂φ

∂y
̂ +

∂φ

∂z
k̂

)

=
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2

≡ ∇2 φ .

∇2 is known as the Laplacian or the Laplace operator. A number of well known equations that are

built around the Laplacian are:

• Laplace’s equation: ∇2φ = 0 .

• Poisson’s equation: ∇2φ = ρ .

• Helmholtz equation: ∇2φ+ k2φ = 0 .

• Heat equation: ∇2φ− 1

κ

∂φ

∂t
= 0 .

• Wave equation: ∇2φ− 1

c2
∂2φ

∂t2
= 0 .
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Lecture 33

The Divergence Theorem

This is one of the great results of Applied Mathematics.

Physically it says that the nett flux of F
˜

through the closed surface S of some volume V , is caused

by the total divergence of F
˜

in V .

©
∫∫

S
F
˜

· n̂ dS =

∫ ∫ ∫

V
∇ · F

˜
dV

Gauss’ Divergence Theorem

This makes sense: if ∇ · F
˜

is zero, then F
˜

is incompressible; flux in one side = flux out on other side,

so

©
∫∫

S
F
˜

· n̂ dS = 0 if ∇ · F
˜

= 0 .

The divergence theorem has two main uses:

1. It converts [nasty] surface integrals into [much nicer] volume integrals.

2. It allows us to derive the conservation laws of continuum mechanics.

Proof of Divergence Theorem

We begin by “chopping” up the volume V into N little subvolumes ∆V1, ∆V2, . . . , ∆VN .

Each subvolume has the closed surface ∆S1, ∆S2, . . . , ∆SN

and outward pointing unit normal vectors n̂1, n̂2, . . . , n̂N .
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We want to look at

N∑

i=1

(∇ · F
˜

)i ∆Vi

≈
N∑

i=1

(
1

∆Vi
©
∫∫

∆Si

(F
˜

· n̂)i dS

)
∆Vi

using the definition of divergence.

But integrals over all the internal surfaces cancel, because the respective unit normal vectors are in

opposite directions.

N∑

i=1

(∇ · F
˜

)i ∆Vi ≈
∑

external

(
©
∫∫

(F
˜

· n̂)i dS

)

which becomes exact as N →∞, and Gauss’ Divergence Theorem follows.
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Example: Calculate the nett outward flux of

F
˜

= k(x ı̂ + y ̂ + z k̂)

across the surface of a sphere of radius b centred at the origin.

We have to evaluate ©
∫∫

S
F
˜

· n̂ dS; a nasty surface integral in cartesian coordinates . But if

we use the divergence theroem:

©
∫∫

S
F
˜

· n̂ dS =

∫ ∫ ∫

V
∇ · F

˜
dV

=

∫ ∫ ∫

V

[
∂(k x)

∂x
+
∂(k y)

∂y
+
∂(k z)

∂z

]
dV

= 3 k

∫ ∫ ∫

V
dV

= 3 k × (volume of the sphere)

= 4 k π b3 .

Of course, we could also have directly solved the surface integral in spherical coordinates.

First we recognise that

F
˜

= k(x ı̂ + y ̂ + z k̂) = kr
˜

= k b êr on the surface of the sphere,

and that the surface element is dS
˜

= b2 sinθ dθ dφ êr.

Then ©
∫∫

S
F
˜

· dS
˜

=

∫ 2π

φ=0

∫ π

θ=0
(k b êr) · (b2 sinθ dθ dφ êr)

=

∫ 2π

φ=0

∫ π

θ=0
k b3 sinθ dθ dφ

= 4 k π b3 .
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Example: Temperature T (x, y, z) in a solid.

The solid has specific heat c (energy per mass per degree kelvin); density ρ (mass per

volume); heat flow vector q
˜

(energy per time per surface area).

The energy in the volume is Q = ρ c T .

Conservation of energy ⇒

Rate of increase of energy in V = Flux of energy in through S

⇒ d

dt

∫ ∫ ∫

V
ρ c T dV = −©

∫∫

S
q
˜

· n̂ dS

⇒
∫ ∫ ∫

V
ρ c

∂T

∂t
dV =

∫ ∫ ∫

V
∇ · q
˜
dV

by the divergence theorem.

Now, since this holds for every volume V in the solid, we must have

ρ c
∂T

∂t
= −∇ · q

˜
.

Furthermore, Fourier’s law of conduction says heat flows from hot to cold ⇒ assume

q
˜

= −k∇T .

∴ ρ c
∂T

∂t
= k∇ · (∇T )

⇒ ∂T

∂t
=

k

ρ c
∇2T

heat equation
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Lecture 34

Curl of a Vector Field

This is a concept that is closely related to ideas involved in Green’s theorem in the plane.

Divergence measures normal flux out across a surface. Curl is a measure of tangential flux around the

edge of an open surface.

The direction around the boundary curve C is related to the normal direction n̂ by the right hand

rule.

We define the circulation of vector field F
˜

to be

Γ =

∮

C
F
˜

· dr
˜

This is an important quantity; e.g. circulation is responsible for the lift force on aeroplane wings.

Circulation measures the tangential flux of F
˜

around C. If we allow the area S → 0, do we get a

property that depends only on F
˜

??

No - because the direction of n̂ is still involved, even as S → 0. So we define the vector curlF
˜

through

the relation

143



n̂ · curlF
˜

= lim
S→0

{
1

S

∮

C
F
˜

· dr
˜

}

Definition of curlF
˜

in Cartesian Coordinates

Let S be a little rectangle, parallel to the x-y plane and in the presence of a vector field F
˜

=

F1 ı̂ + F2 ̂ + F3 k̂ .

Estimate

∮

C
F
˜

· dr
˜

:

∮

C
F
˜

· dr
˜

=

∫ J

I
F
˜

· dr
˜

+

∫ K

J
F
˜

· dr
˜

+

∫ L

K
F
˜

· dr
˜

+

∫ I

L
F
˜

· dr
˜
.

But

∫ J

I
F
˜

· dr
˜

=

∫ a+∆x

a
F1 d x

≈ F1(a, b, c) ∆x ,

and similarly

∫ K

J
F
˜

· dr
˜

=

∫ b+∆y

b
F2 d y ≈ F2(a+ ∆x, b, c) ∆y

∫ L

K
F
˜

· dr
˜

=

∫ a

a+∆x
F1 d x ≈ −F1(a, b+ ∆y, c) ∆x

∫ I

L
F
˜

· dr
˜

=

∫ b

b+∆y
F2 d y ≈ −F2(a, b, c) ∆y

⇒
∮

C
F
˜

· dr
˜
≈ [F2(a+ ∆x, b, c)− F2(a, b, c)]∆y − [F1(a, b+ ∆y, c)− F1(a, b, c)] ∆x
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= ∆x ∆y

( [
F2(a+ ∆x, b, c)− F2(a, b, c)

∆x

]

−
[
F1(a, b+ ∆y)− F1(a, b)

∆y

] )

= S

(
∂ F2

∂ x
− ∂ F1

∂ y

)

⇒ 1

S

∮

C
F
˜

· dr
˜
≈

(
∂ F2

∂ x
− ∂ F1

∂ y

)
.

As usual, the approximation becomes exact as ∆x and ∆y → 0 (S → 0) .

So k̂ · curlF
˜

=
∂ F2

∂ x
− ∂ F1

∂ y
.

But this is just one component of the vector curlF
˜

.

curlF
˜

= (ı̂ · curlF
˜
, ̂ · curlF

˜
, k̂ · curlF

˜
)

If we repeat the calculation but with a different and appropriate S, we find





ı̂ · curlF
˜

=
∂ F3

∂ y
− ∂ F2

∂ z

̂ · curlF
˜

=
∂ F1

∂ z
− ∂ F3

∂ x

⇒ curlF
˜

=

(
∂ F3

∂ y
− ∂ F2

∂ z

)
ı̂ +

(
∂ F1

∂ z
− ∂ F3

∂ x

)
̂ +

(
∂ F2

∂ x
− ∂ F1

∂ y

)
k̂ .

All three components of curlF
˜

can be conveniently remembered in determinant form:

curlF
˜

=

∣∣∣∣∣∣∣

ı̂ ̂ k̂
∂

∂ x
∂

∂ y
∂

∂ z

F1 F2 F3

∣∣∣∣∣∣∣

This can be formally written as

curlF
˜

=

(
∂

∂x
ı̂ +

∂

∂y
̂ +

∂

∂z
k̂

)
×
(
F1 ı̂ + F2 ̂ + F3 k̂

)

⇒ curlF
˜

= ∇× F
˜
.
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Note: The curl of a conservative vector field is the zero vector; i.e.

∇× F
˜

= ∇× (∇φ) = 0
˜
.

Proof:

∇× (∇φ) =

∣∣∣∣∣∣∣∣∣∣∣

ı̂ ̂ k̂

∂
∂ x

∂
∂ y

∂
∂ z

∂φ
∂ x

∂φ
∂ y

∂φ
∂ z

∣∣∣∣∣∣∣∣∣∣∣

=

(
∂

∂ y

(
∂φ

∂ z

)
− ∂

∂ z

(
∂φ

∂ y

))
ı̂ +

(
∂

∂ z

(
∂φ

∂ x

)
− ∂

∂ x

(
∂φ

∂ z

))
̂ +

(
∂

∂ x

(
∂φ

∂ y

)
− ∂

∂ y

(
∂φ

∂ x

))
k̂

= 0 ı̂+0 ̂ +0 k̂

= 0
˜
.
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Lecture 35

Curl

Example: Consider the point P on a rotating flywheel, where the magnitude of the

angular speed is ‖ω
˜
‖ = ω = constant.

We have v
˜

= ω
˜
× r
˜
, so

v
˜

=

∣∣∣∣∣∣∣

ı̂ ̂ k̂

ω1 ω2 ω3

x y z

∣∣∣∣∣∣∣

⇒ v
˜

= (ω2 z − ω3 y) ı̂ + (ω3 x− ω1 z) ̂ + (ω1 y − ω2 x) k̂ .

147



Now look at curl × v
˜
:

=

∣∣∣∣∣∣∣∣∣∣∣

ı̂ ̂ k̂

∂
∂ x

∂
∂ y

∂
∂ z

(ω2 z − ω3 y) (ω3 x− ω1 z) (ω1 y − ω2 x)

∣∣∣∣∣∣∣∣∣∣∣

= (ω1 + ω1) ı̂ + (ω2 + ω2) ̂ + (ω3 + ω3) k̂

= 2ω
˜
.

So ∇× v
˜
≡ twice the angular velocity, and ∇× v

˜
is perpendicular to v

˜
.

In fluid mechanics curl v
˜

is commonly referred to as the vorticity. It is a very important quantity.

Stokes’ Theorem

This is another great result of Applied Mathematics.

It basically says that the circulation of F
˜

around the boundary, is caused by the curl of F
˜

inside the

boundary.

∮

C
F
˜

· dr
˜

=

∫ ∫

S
n̂ · curlF

˜
dS =

∫ ∫

S
(∇× F

˜
) · dS
˜

Stokes’ Theorem

[Recall Green’s theorem in the plane.]

Here, S is any smooth surface that has C as its boundary.
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The direction around C and direction of n̂ are related by the right-hand rule.

Proof of Stokes’ Theorem

Imagine that we “chop up” S into N little subsurfaces ∆S1, ∆S2, . . . , ∆SN .

and then look at

N∑

i=1

(
n̂ · (∇× F

˜
)
)
i

∆Si ≈
N∑

i=1

(
1

∆Si

∮

∆Ci

F
˜

· dr
˜

)
∆Si

from the definition.

But all the integrals aling the internal lines cancel, since the line integrals are traversed in opposite

directions. Then
N∑

i=1

(
n̂ · (∇× F

˜
)
)
i
dSi ≈

∑

exterior

∮

C
F
˜

· dr
˜
.

This becomes exact as N →∞, and the required result follows:

∫ ∫

S
n̂ · (∇× F

˜
) dS =

∮

C
F
˜

· dr
˜

Note: If the surface S is parallel to the x-y plane , then n̂ = k̂ , and we get

∫ ∫

S
k̂ · (∇× F

˜
) dS =

∮

C
F
˜

· dr
˜

⇒
∫ ∫

S

(
∂ F2

∂ x
− ∂ F1

∂ y

)
dS =

∮

C
F
˜

· dr
˜

This is Green’s theorem in the plane (a special case of Stokes’ Theorem).
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Example: Faraday discovered experimentally that a voltage is induced in a closed

circuit proportional to the rate of change of [magnetic] flux through the circuit.

∮

C
E
˜

· dr
˜

= − d

dt

∫ ∫

S
B
˜

· n̂ dS

Faraday’s Law

After invoking Stokes’ Theorem, this becomes

∫ ∫

S
n̂ · (∇×E

˜
) dS = −

∫ ∫

S

∂B
˜
∂t

· n̂ dS

⇒
∫ ∫

S

(
∇×E

˜
+
∂B
˜
∂t

)
dS = 0 .

Since this is true for any arbitrary surface S,

∇×E
˜

= −
∂B
˜
∂t

at every point.
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Lecture 36

Scalar and Vector Potentials

Irrotational Vector Fields

In fluid mechanics, motion of the fluid is described by the vector field v
˜
(x, y, z) which is the velocity

vector.

If the fluid is not viscous (not “sticky”) it can be shown that

curlv
˜

= 0
˜

in the fluid.

A field for which curl v
˜

= 0
˜

is called an irrotational vector field.

Now let’s look at curl (grad φ) = ∇×∇φ

=

∣∣∣∣∣∣∣∣∣∣∣

ı̂ ̂ k̂

∂
∂ x

∂
∂ y

∂
∂ z

∂φ
∂ x

∂φ
∂ y

∂φ
∂ z

∣∣∣∣∣∣∣∣∣∣∣

= 0 ı̂ + 0 ̂ + 0 k̂ .

⇒ curl (grad φ) = ∇×∇φ = 0
˜

(a vector identity)

So if v
˜

is irrotational, we can write

v
˜

= grad φ = ∇φ .
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The function for φ(x, y, z) is called a scalar potential for v
˜
.

But now, since v
˜

= grad φ, then v
˜

must be a conservative vector field.

Alternatively, suppose v
˜

is irrotational. If we integrate over any open surface S,

∫ ∫

S
n̂ · curl v

˜
dS = 0

⇒
∮

C
v
˜

· dr
˜

= 0 by Stokes’ Theorem.

So we have

v˜ is irrotational

(∇× v˜ = 0˜)

ր ց

v˜ has a v˜ is conservative

scalar potential ←−
∮

C
v˜ · dr˜ = 0

(v˜ = ∇φ)

Example:

• non-viscous fluid flow

∇× v
˜

= 0
˜
⇒ v

˜
= ∇φ

φ is called the velocity potential.

• electrostatics

∇×E
˜

= 0
˜
⇒ E

˜
= −∇V

V is the potential in volts.
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Incompressible Vector Fields

We have seen that divF
˜

is related to how compressible the vector field F
˜

is.

F
˜

is incompressible if divF
˜

= 0.

Example:

• incompressible fluid flow

An incompressible fluid has div v
˜

= ∇ · v
˜

= 0 where v
˜

is the velocity vector.

• magnetic fields

Maxwell’s equations say that the magnetic induction field B
˜

must satisfy divB
˜

=

∇ · B
˜

= 0. B
˜

is said to be solenoidal.

So if ∇ · F
˜

= 0, F
˜

is also called solenoidal.

Now let’s look at div (curlA
˜

) = ∇ ·∇×A
˜
.

∇×A
˜

=

∣∣∣∣∣∣∣∣∣∣∣

ı̂ ̂ k̂

∂
∂ x

∂
∂ y

∂
∂ z

A1 A2 A3

∣∣∣∣∣∣∣∣∣∣∣

=

(
∂A3

∂y
− ∂A2

∂z

)
ı̂ +

(
∂A1

∂z
− ∂A3

∂x

)
̂ +

(
∂A2

∂x
− ∂A1

∂y

)
k̂

Then ∇ ·∇×A
˜

=
∂

∂x

(
∂A3

∂y
− ∂A2

∂z

)
+

∂

∂y

(
∂A1

∂z
− ∂A3

∂x

)
+

∂

∂z

(
∂A2

∂x
− ∂A1

∂y

)

= 0 .

Alternatively, the determinant matrix can be recognised as the scalar triple product:

∇ ·∇×A
˜

=

∣∣∣∣∣∣∣∣∣∣∣

∂
∂ x

∂
∂ y

∂
∂ z

∂
∂ x

∂
∂ y

∂
∂ z

A1 A2 A3

∣∣∣∣∣∣∣∣∣∣∣

= 0 .

⇒ div (curlA
˜

) = ∇ ·∇×A
˜

= 0 .

(a vector identity)
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So if F
˜

is incompressible, we can write

F
˜

= curlA
˜

= ∇×A
˜

A
˜

(x, y, z) is called a vector potential for F
˜

.

Alternatively, suppose F
˜

is incompressible. If we integrate throughout the volume V ,

∫ ∫ ∫

V
∇ · F

˜
dV = 0

⇒ ©
∫∫

S
F
˜

· n̂dS = 0 by the Divergence Theorem.

So we have

F˜ is incompressible

(∇ · F˜ = 0)

ր ց

F˜ has a zero nett flux

vector potential ←− ©
∫∫

S
F˜ · n̂ dS = 0

(F˜ = ∇×A˜ ) ( can show this)

Incompressible and Irrotational Vector Fields

∇ · F
˜

= 0

∇× F
˜

= 0
˜

⇒ F
˜

= ∇φ
⇒ ∇ ·∇φ = 0

⇒ ∇2φ = 0 Laplace’s equation
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Lecture 37

Fourier Series

When we looked at Taylor Series, we were dealing with a method for representing an arbitrary function

f(x) in terms of the functions

x0, x1, x2, x3, x4, . . . , xN .

Now we want to consider functions f(x) that are periodic.

A function is said to be periodic with period p if

f(x+ p) = f(x) for all x .

Periodic functions can be very complicated. How can we represent them??

Functions of Period 2π

If our function f(x) has period 2π, then

f(x+ 2π) = f(x) for all x .

We can try to represent 2π−periodic functions f(x) in terms of the orthogonal functions

1, cosx, cos 2x, cos 3x, cos 4x, cos 5x, . . .

sinx, sin 2x, sin 3x, sin 4x, sin 5x, . . .

and thus we can write
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f(x) = a0 +
∞∑

n=1

(an cosnx+ bn sinnx) .

Fourier Series

The constants a0, a1, a2, . . . and b1, b2, . . . have yet to be found.

Now the functions cosnx and sinnx are orthogonal in the sense that

∫ π

−π
cosmx cosnx dx =





0 if m 6= n

π if m = n 6= 0

2π if m = n = 0

∫ π

−π
sinmx sinnx dx =

{
0 if m 6= n

π if m = n 6= 0

∫ π

−π
sinmx cosnx dx = 0 for all m,n .

(These formulae are analogous to dot products in vectors)

These orthogonality conditions can be proved using standard trig identities; e.g.

for m 6= n

∫ π

−π
cosmx cosnx dx =

∫ π

−π

1

2
[cos(m+ n)x + cos(m− n)x] dx

=
1

2

[
sin(m+ n)x

m+ n
+

sin(m− n)x

m− n

]π

−π

= 0 (m 6= n)

for m = n 6= 0

∫ π

−π
cosmx cosnx dx =

∫ π

−π
cos2mx dx

=

∫ π

−π

1

2
[cos 2mx + 1] dx

=
1

2

[
sin 2mx

2m
+ x

]π

−π

= π (m = n 6= 0)

for m = n = 0

∫ π

−π
cosmx cosnx dx =

∫ π

−π
1 dx

= 2π (m = n = 0)

and so on.
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Another way to consider it is to analyse the plots of cosmx, cosnx, and cosmx cosnx. When m 6= n,

the individual plots of cosmx and cosnx oscillate about the x−axis, as does the product of the two

functions. The negative areas cancel with the positive areas and the integral equates to zero. However,

when m = n, the product now becomes cos2mx and its plot will be positive everywhere. Hence the

area must be > 0.

So a Fourier Series is an expansion of a 2π periodic function f(x) in terms of orthogonal, periodic

functions.

Convergence of Fourier Series

A very wide class of periodic functions can be represented using Fourier series. Even functions with

discontinuities can have a Fourier series representation.

Consider the Fourier series

f(x) = a0 +
∞∑

n=1

(an cosnx+ bn sinnx)

and suppose the periodic function f(x) has continuous derivatives up to the kth order [i.e. the kth

order derivative may have discontinuities]. It can then be shown that the Fourier coefficients behave

like
an

bn





→ constant

nk+1
as n→∞

i.e. the smoother the function f(x) is, the faster that an, bn → 0 as n→∞. (convergence rate)

The consequence is that fewer terms will be required in the Fourier series to represent the periodic

function = a good thing!
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If f(x) has a jump discontinuity at the point x = a, it can be shown that the Fourier series converges

to the average value
1

2

[
f(a−) + f(a+)

]
at that point.

The convergence rate will be poor at ≈ constant

n
.

Gibbs’ Phenomenon

It can be shown that if a function has a jump discontinuity, the Fourier series for that function oscillates

either side of the jump.
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Lecture 38

Fourier Series

For a 2π periodic function, we have

f(x) = a0 +
∞∑

n=1

(an cosnx+ bn sinnx) .

How do we calculate the coefficients an and bn for a given f(x)??

We use the orthogonality relations.

∫ π

−π
f(x) dx =

∫ π

−π

(
a0 +

∞∑

n=1

(an cosnx+ bn sinnx)

)
dx

=

∫ π

−π
a0 dx +

∞∑

n=1

(
an

∫ π

−π
cosnx dx + bn

∫ π

−π
sinnx dx

)

So a0 =
1

2π

∫ π

−π
f(x) dx

This is simply the average of the function across one period.

To get the remaining an, we first multiply f(x) by cosmx before integrating:

∫ π

−π
f(x) cosmx dx =

∫ π

−π

(
a0 +

∞∑

n=1

(an cosnx+ bn sinnx)

)
cosmx dx

= a0

∫ π

−π
cosmx dx +

∞∑

n=1

(
an

∫ π

−π
cosnx cosmx dx + bn

∫ π

−π
sinnx cosmx dx

)

By way of the orthogonality conditions, if m 6= n, all terms equate to zero. But if m = n,

∫ π

−π
f(x) cosmx dx =

∫ π

−π
cos2mx dx = am π .
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So am =
1

π

∫ π

−π
f(x) cosmx dx

Similarly, to get bm we first multiply f(x) by sinmx before integrating, ths giving

bm =
1

π

∫ π

−π
f(x) sinmx dx

In summary, the coefficients are given from Euler’s formulae

a0 =
1

2π

∫ π

−π
f(x) dx

am =
1

π

∫ π

−π
f(x) cosmx dx

bm =
1

π

∫ π

−π
f(x) sinmx dx

m = 1, 2, 3, . . .

Note: Fourier series are sometimes written in the equivalent form:

f(x) =
a0

2
+

∞∑

n=1

(an cosnx+ bn sinnx)

with the coefficients given by

am =
1

π

∫ π

−π
f(x) cosmx dx m = 0, 1, 2, 3, . . .

bm =
1

π

∫ π

−π
f(x) sinmx dx m = 1, 2, 3, . . .
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Example:

In the interval −π ≤ x ≤ π, f(x) has the form

f(x) =





− x

π
, −π ≤ x ≤ 0

+
x

π
, 0 ≤ x ≤ π

f(x) is 2π periodic. We want to write

f(x) = a0 +
∞∑

n=1

(an cosnx+ bn sinnx)

Now

a0 =
1

2π

∫ π

−π
f(x) dx

=
1

2π

{∫ 0

−π

−x
π

dx+

∫ π

0

x

π
dx

}

=
1

2π

{[−x2

2π

]0

−π

+

[
x2

2π

]π

0

}

=
1

2π

{
π2

2π
+
π2

2π

}

So a0 =
1

2
.

a0 is the average, or “dc” component of the function.
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an =
1

π

∫ π

−π
f(x) cosnx dx

=
1

π

{∫ 0

−π

−x
π

cosnx dx+

∫ π

0

x

π
cosnx dx

}

=
1

π

{[
− x

π

sinnx

n

]0

−π

−
∫ 0

−π
− 1

π

sinnx

n
dx

+

[
x

π

sinnx

n

]π

0

−
∫ π

0

1

π

sinnx

n
dx

}

=
1

π

{
−
[cosnx

n2π

]0
−π

+
[cosnx

n2π

]π
0

}

=
1

n2π2
{−1 + cos(−nπ) + cos(nπ)− 1}

=
2

n2π2
{cos(nπ)− 1}

=





0 , n = 2, 4, 6, 8, . . .

− 4

n2π2
, n = 1, 3, 5, 7, . . .

We can similarly show that bn = 0 , ∀ n. So

f(x) =
1

2
+

∑

n=1,3,5,...

−4

n2π2
cosnx

f(x) =
1

2
−

∞∑

k=0

4

(2k + 1)2π2
cos((2k + 1)x)

Note: We can get nice formulae from expansions such as this. e.g. if we put x = 0 into

the equation above, then f(x) = 0, and

0 =
1

2
−

∞∑

k=0

4

(2k + 1)2π2
cos((2k + 1) 0)

=
1

2
−

∞∑

k=0

4

(2k + 1)2π2
.

Then
π2

8
=

∞∑

k=0

1

(2k + 1)2

=
1

12
+

1

32
+

1

52
+

1

72
+ . . .
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Lecture 39

Functions of Arbitrary Period

So far we have only dealt with Fourier series for functions having 2π−periodicity. So if g(y) has period

2π in y, we have

g(y) = a0 +

∞∑

n=1

(an cosny + bn sinny) .

But now suppose that we have a function f(x) of period 2L in x. How do we write its Fourier series??

Simple! We make a ‘stretch’ of the y coordinate to give x; i.e. we rescale so that

x =
y L

π
or y =

π x

L
.

e.g.

So when x = −L, y = −π; and when x = L, y = π. In terms of y, our 2π−periodicity has been

conserved. Since g(y) ≡ f(x), periodicity has also been conserved in x, but with period 2L. Thus

f(x) = a0 +
∞∑

n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
.

We now require new formulae for the coefficients a0, an, and bn.
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For the 2π periodic function g(y)

a0 =
1

2π

∫ π

−π
g(y) dy

=
1

2π

∫ L

−L
f(x)

π

L
dx

So a0 =
1

2L

∫ L

−L
f(x) dx .

an =
1

π

∫ π

−π
g(y) cosny dy

=
1

π

∫ L

−L
f(x) cos

(nπx
L

) π

L
dx

So an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx .

Similarly, bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx .

Example: A “saw-tooth” wave of period 2L.

f(x) =
H

2L
(x+ L) , −L ≤ x ≤ L .

We want to write

f(x) = a0 +
∞∑

n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))

164



Now

a0 =
1

2L

∫ L

−L
f(x) dx

=
1

2L

H

2L

∫ L

−L
(x+ L) dx

=
H

4L2

[
x2

2
+ Lx

]L

−L

=
H

2
.

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx

=
1

L

H

2L

∫ L

−L
(x+ L) cos

(nπx
L

)
dx

=
H

2L2

{[
(x+ L)

L

nπ
sin
(nπx
L

)]L

−L

−
∫ L

−L

L

nπ
sin
(nπx
L

)
dx

}

=
H

2L2

(
L

nπ

)2 [
cos
(nπx
L

)]L
−L

= 0 .

So an = 0 , ∀ n > 0.

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx

=
1

L

H

2L

∫ L

−L
(x+ L) sin

(nπx
L

)
dx

=
H

2L2

{[
− (x+ L)

L

nπ
cos
(nπx
L

)]L

−L

−
∫ L

−L
− L

nπ
cos
(nπx
L

)
dx

}

=
H

2L2

{
− 2L2

nπ
cos(nπ) +

(
L

nπ

)2 [
sin
(nπx
L

)]L
−L

}

= − H

nπ
cos(nπ)

So bn = − H

nπ
(−1)n , ∀ n.
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Then f(x) =
H

2
− H

π

∞∑

n=1

(−1)n

n
sin
(nπx
L

)
.

Note: The rate of convergence for the coefficients ≈ 1

n
because the function is discontin-

uous at the first derivative.

We can get other nice formulae from this expansion: e.g. if we put x =
L

2
into the original

equation, then f(x) =
H

2L

3L

2
=

3H

4
.

∴

3H

4
=

H

2
− H

π

∞∑

n=1

(−1)n

n
sin
(nπ

2

)

= H

{
1

2
− 1

π

∞∑

n=1

(−1)n

n
sin
(nπ

2

)}

⇒
(

3

4
− 1

2

)
π = −

∞∑

n=1

(−1)n

n
sin
(nπ

2

)

⇒ π

4
= −

∞∑

k=0

(−1)2k+1

2k + 1
(−1)k

=
∞∑

k=0

(−1)3k+2

2k + 1

= 1− 1

3
+

1

5
− 1

7
+ . . .
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Lecture 40

Even and Odd Functions

If our 2π−periodic function f(x) is either even or odd, we can save some work.

An even function is one that is symmetric about the y−axis.

So if f(x) is even, f(−x) = f(x) .

An odd function is one that is anti-symmetric about the y−axis.

So if f(x) is odd, f(−x) = − f(x) .
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Additionally, we can recall that

1. even function × even function = even function.

2. even function × odd function = odd function.

3. odd function × odd function = even function.

Now, if f(x) is an odd function of period 2L, then we only need the sine terms:

f(x) =
∞∑

n=1

bn sin
nπx

L

A Fourier series for f(x) being odd.

Additionally, we have

bn =
1

L

∫ L

−L
f(x)︸︷︷︸ sin

(nπx
L

)

︸ ︷︷ ︸
dx

odd × odd = even

=
2

L

∫ L

0
f(x) sin

(nπx
L

)
dx .

Alternatively, if f(x) is an even function of period 2L, then we only need the cosine terms:

f(x) = a0 +
∞∑

n=1

an cos
nπx

L

A Fourier series for f(x) being even.

and then we have

a0 =
1

2L

∫ L

−L
f(x) dx =

1

L

∫ L

0
f(x) dx .

an =
1

L

∫ L

−L
f(x)︸︷︷︸ cos

(nπx
L

)

︸ ︷︷ ︸
dx

even × even = even

=
2

L

∫ L

0
f(x) cos

(nπx
L

)
dx .
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Even and Odd Periodic Extensions

Suppose f(x) is a function of period 2L, but we only know f(x) over half the interval, 0 ≤ x ≤ L.

We can still make a function of period 2L, using the piece we know.
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Example: Given f(x) = 1 in 0 ≤ x ≤ 1, write f(x) as a Fourier sine series.

Thus we have to make an odd periodic extension.

f(x) =
∞∑

n=1

bn sin
nπx

L

bn =
2

L

∫ L

0
f(x) sin

(nπx
L

)
dx

=
2

L

∫ L

0
sin
(nπx
L

)
dx

=
2

L

(−L
nπ

)
[cos(nπ)− 1] (= zero if n is even)

⇒ bn =
4

nπ
if n is odd.

∴ f(x) =
∞∑

k=0

4

(2k + 1)π
sin

(
(2k + 1)πx

L

)

Question: What value of x should be chosen so that this Fourier series gives an approxi-

mation for π.
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Example: Given f(x) = 1 in 0 ≤ x ≤ 1, write f(x) as a Fourier cosine series.

Thus we have to make an even periodic extension.

f(x) = a0 +
∞∑

n=1

an cos
nπx

L

a0 =
1

L

∫ L

0
f(x) dx

=
1

L

∫ L

0
dx

= 1

an =
2

L

∫ L

0
f(x) cos

(nπx
L

)
dx

=
2

L

∫ L

0
cos
(nπx
L

)
dx

=
2

L

(
L

nπ

)
[0− 0]

⇒ an = 0 for n ≥ 1.

∴ f(x) = 1 unsurprisingly!!
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Lecture 41

Magnetic Resonance Imaging (MRI),

Magnet Design, and Fourier Series

a

b

c

Jφ
a

-L

L

pL

Jφ
b

Jz
a

Jz
b

1

2

region 3

qL

Target Magnetic Field

This is the magnet field that we want on the imaginary cylinder of radius c:

BT
z (c, φ, z;m) = δm

∞∑

k=1

(Am,k cos(mφ) + Cm,k sin(mφ)) cos (γk(z − L))

where the Fourier coefficients Am,k and Cm,k are defined as

Am,k =
1

πL

∫ L

−L

∫ π

−π
Bz(c, φ, z;m) cos(mφ) cos(γk(z − L)) dφ dz and

Cm,k =
1

πL

∫ L

−L

∫ π

−π
Bz(c, φ, z;m) sin(mφ) cos(γk(z − L)) dφ dz ;

and γk =
kπ

2L
.
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Magnetic Fields

Bz1
(R,φ, z;m) =

∞∑

k=1

(Am,k cos(mφ) + Cm,k sin(mφ))

· cos(γk(z − L)) Im(γkR) 0 ≤ R ≤ a

Bz2
(R,φ, z;m) =

∞∑

k=1

(Am,k cos(mφ) + Cm,k sin(mφ)) cos(γk(z − L)) I ′m(γka)

·
(
Km(γkR) I ′m(γkb)−K ′

m(γkb) Im(γkR)

K ′
m(γka) I ′m(γkb)−K ′

m(γkb) I ′m(γka)

)
a ≤ R ≤ b ,

Bz3
(R,φ, z;m) = 0 R ≥ b .

Current Density on the Magnets

Ja
z (φ, z;m) =

∞∑

k=1

m(Cm,k cos(mφ)−Am,k sin(mφ)) sin(γk(z − L))

· I ′m(γkb)

µ0 a2 γ2
k (K ′

m(γka) I ′m(γkb)−K ′
m(γkb) I ′m(γka))

Ja
φ(φ, z;m) =

∞∑

k=1

−(Am,k cos(mφ) + Cm,k sin(mφ)) cos(γk(z − L))

· I ′m(γkb)

µ0 a γk (K ′
m(γka) I ′m(γkb)−K ′

m(γkb) I ′m(γka))
,

Jb
z(φ, z;m) =

∞∑

k=1

m(Am,k sin(mφ)− Cm,k cos(mφ)) sin(γk(z − L))

· I ′m(γka)

µ0 b2 γ2
k (K ′

m(γka) I ′m(γkb)−K ′
m(γkb) I ′m(γka))

Jb
φ(φ, z;m) =

∞∑

k=1

(Am,k cos(mφ) + Cm,k sin(mφ)) cos(γk(z − L))

· I ′m(γka)

µ0 b γk (K ′
m(γka) I ′m(γkb)−K ′

m(γkb) I ′m(γka))
.

Stream Functions for Both Magnets

ψa(φ, z;m) =
∞∑

k=1

(Am,k cos(mφ) + Cm,k sin(mφ)) sin(γk(z − L))

· I ′m(γkb)

µ0 a γ2
k [K ′

m(γkb) I ′m(γka)−K ′
m(γka) I ′m(γkb)]

,

ψb(φ, z;m) =

∞∑

k=1

−(Am,k cos(mφ) + Cm,k sin(mφ)) sin(γk(z − L))

· I ′m(γka)

µ0 b γ2
k [K ′

m(γkb) I ′m(γka)−K ′
m(γka) I ′m(γkb)]

.
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